Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Ta có thể đưa ra nhiều bộ ba số thỏa mãn yêu cầu bài toán như sau:
+ Ví dụ 1. Các số 7; 9 và 2.
Ta có 7 không chia hết cho 2 và 9 cũng không chia hết cho 2 nhưng 7 + 9 = 16 lại chia hết cho 2.
+ Ví dụ 2. Các số 13; 19 và 4.
Ta có 13 không chia hết cho 4 và 19 cũng không chia hết cho 4 nhưng 13 + 19 = 32 lại chia hết cho 4.
+ Ví dụ 3. Các số 33; 67 và 10.
Ta có 33 không chia hết cho 10 và 67 cũng không chia hết cho 10 nhưng 33 + 67 = 100 lại chia hết cho 10.
Tương tự, các em có thể đưa ra các bộ ba số khác nhau thỏa mãn yêu cầu bài toán.
Qua bài tập 6 này, ta rút ra nhận xét như sau:
Nếu m chia hết cho p và n chia hết cho p thì tổng m + n chia hết cho p nhưng điều ngược lại chưa chắc đã đúng.
Nếu tổng m + n chia hết cho p thì chưa chắc m chia hết cho p và n chia hết cho p.
2.
Vì (a+b)⋮ma+b ⋮ m nên ta có số tự nhiên k (k≠0)k≠0 thỏa mãn a + b = m.k (1)
Tương tự, vì a⋮ma ⋮ m nên ta cũng có số tự nhiên h(h≠0)h≠0 thỏa mãn a = m.h
Thay a = m. h vào (1) ta được: m.h + b = m.k
Suy ra b = m.k – m.h = m.(k – h) (tính chất phân phối của phép nhân với phép trừ).
Mà m⋮mm⋮m nên theo tính chất chia hết của một tích ta có m(k−h)⋮mmk-h ⋮ m
Vậy b⋮m.b ⋮ m.
nếu:
n = 1
m = 1
b = 2
.có 1 ko chia hết cho 2
nhưng 1+1=2
Mà 2 ⋮ 2
➩n = 1
m = 1
b = 2
có nhiều lắm bạn ạ vd số nhỏ thôi nhé
a ) n = 470 ; 472 ; 474 ; 476 ; 478; 480;482;484;486;488;490;492;494;496;498;500
b) n= 471;474;477;480;483;486;489;492;495;498
c) n chia hết cho cả 2, 3 là 474;480;486;492;498
d) 472;476;484;488;496;500
e) 470;478;482;490
f)471;477;483;489;495
h)giống câu e
i) 480;492
k)473;484;495
a)
B = 6 + 9 + m + 12 + n
Do 6 chia hết cho 3; 9 chia hết cho 3; 12 chia hết cho 3
Nên B chia hết cho 3 khi và chỉ khi (m + n) chia hết cho 3.
Vậy để B chia hết cho 3 thì (m + n) phải chia hết cho 3 với m, n là các số tự nhiên.
a: M chia hết cho 3
=>5+8+* chia hết cho 3
=>*+13 chia hết cho 3
=>* thuộc {2;5;8}
b: M chia hết cho 9
=>5+8+* chia hết cho 9
=>*=5
c: M chia hết cho3 và không chia hết cho 9
=>*=2 hoặc *=8
TL
Ta có thể đưa ra nhiều bộ ba số thỏa mãn yêu cầu bài toán như sau:
+ Ví dụ 1. Các số 7; 9 và 2.
Ta có 7 không chia hết cho 2 và 9 cũng không chia hết cho 2 nhưng 7 + 9 = 16 lại chia hết cho 2.
+ Ví dụ 2. Các số 13; 19 và 4.
Ta có 13 không chia hết cho 4 và 19 cũng không chia hết cho 4 nhưng 13 + 19 = 32 lại chia hết cho 4.
+ Ví dụ 3. Các số 33; 67 và 10.
Ta có 33 không chia hết cho 10 và 67 cũng không chia hết cho 10 nhưng 33 + 67 = 100 lại chia hết cho 10.
Tương tự, các em có thể đưa ra các bộ ba số khác nhau thỏa mãn yêu cầu bài toán.
Qua bài tập 6 này, ta rút ra nhận xét như sau:
Nếu m chia hết cho p và n chia hết cho p thì tổng m + n chia hết cho p nhưng điều ngược lại chưa chắc đã đúng.
Nếu tổng m + n chia hết cho p thì chưa chắc m chia hết cho p và n chia hết cho p.
HT ( Sai thì cho mik xin lỗi )
3 và 8 và 11
Chắc vậy thôi nha bạn :)