K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(\overline C \left( x \right) = \frac{{C\left( x \right)}}{x} = \frac{{50000 + 105x}}{x}\)

b) \(\mathop {\lim }\limits_{x \to  + \infty } \overline C \left( x \right) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{50000 + 105x}}{x} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\left( {\frac{{50000}}{x} + 105} \right)}}{x} = \mathop {\lim }\limits_{x \to  + \infty } \left( {\frac{{50000}}{x} + 105} \right) = 0 + 105 = 105\)

Vậy khi số sản phẩm càng lớn thì chi phí trung bình để sản xuất một sản phẩm tối đa 105 (nghìn đồng). 

\(C'\left(x\right)=\left(\sqrt{5x^2+60}\right)'=\dfrac{\left(5x^2+60\right)'}{2\sqrt{5x^2+60}}\)

\(=\dfrac{10x}{2\sqrt{5x^2+60}}=\dfrac{5x}{\sqrt{5x^2+60}}\)

\(x'\left(t\right)=20\)

\(C'\left(t\right)=C'\left(x\right)\cdot x'\left(t\right)=\dfrac{100\left(2t+40\right)}{\sqrt{5\left(20t+40\right)^2+60}}\)

\(C'\left(4\right)=\dfrac{100\left(2\cdot4+40\right)}{\sqrt{5\left(80+40\right)^2+60}}\simeq44,7\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

a, Hàm chi phí biên là: 

\(C'\left(Q\right)=2Q+80\)

b, \(C'\left(90\right)=2\cdot90+80=260\left(USD\right)\) 

 Ý nghĩa: Chi phí gia tăng để sản xuất thêm 1 sản phẩm từ 89 sản phẩm lên 90 sản phẩm là 260 (USD)

c, Chi phí sản xuất máy vô tuyến thứ 100 là:

\(C'\left(100\right)=2\cdot100+80=280\left(USD\right)\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

\(\mathop {\lim }\limits_{t \to  + \infty } N\left( t \right) = \mathop {\lim }\limits_{t \to  + \infty } \frac{{50t}}{{t + 4}} = \mathop {\lim }\limits_{t \to  + \infty } \frac{{50t}}{{t\left( {1 + \frac{4}{t}} \right)}} = \mathop {\lim }\limits_{t \to  + \infty } \frac{{50}}{{1 + \frac{4}{t}}} = \frac{{50}}{{1 + 0}} = 50\)

Vậy khi số ngày đào tạo càng nhiều thì số bộ phận mà trung bình một nhân viên có thể lắp ráp được mỗi ngày tối đa 50 bộ phận. 

Cho hai hàm số \(f\left( x \right) = {x^2} - 1,g\left( x \right) = x + 1.\)a) Tính \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) và \(\mathop {\lim }\limits_{x \to 1} g\left( x \right).\)b) Tính \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right]\)và so sánh \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right).\)c) Tính \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) -...
Đọc tiếp

Cho hai hàm số \(f\left( x \right) = {x^2} - 1,g\left( x \right) = x + 1.\)

a) Tính \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) và \(\mathop {\lim }\limits_{x \to 1} g\left( x \right).\)

b) Tính \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right]\)và so sánh \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right).\)

c) Tính \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - g\left( x \right)} \right]\)và so sánh \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) - \mathop {\lim }\limits_{x \to 1} g\left( x \right).\)

d) Tính \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right]\)và so sánh \(\mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right).\)

e) Tính \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}}\)và so sánh \(\frac{{\mathop {\lim }\limits_{x \to 1} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 1} g\left( x \right)}}.\)

2
HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} - 1} \right) = \mathop {\lim }\limits_{x \to 1} {x^2} - \mathop {\lim }\limits_{x \to 1} 1 = {1^2} - 1 = 0\)

\(\mathop {\lim }\limits_{x \to 1} g\left( x \right) = \mathop {\lim }\limits_{x \to 1} \left( {x + 1} \right) = \mathop {\lim }\limits_{x \to 1} x + \mathop {\lim }\limits_{x \to 1} 1 = 1 + 1 = 2\)

b) \(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} + x} \right) = {1^2} + 1 = 2\\\mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0 + 2 = 2\\ \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right).\end{array}\)

c) \(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} - x - 2} \right) = {1^2} - 1 - 2 =  - 2\\\mathop {\lim }\limits_{x \to 1} f\left( x \right) - \mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0 - 2 =  - 2\\ \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right) - \mathop {\lim }\limits_{x \to 1} g\left( x \right).\end{array}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

d) \(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} \left[ {\left( {{x^2} - 1} \right)\left( {x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to 1} \left( {{x^3} + {x^2} - x - 1} \right) = {1^3} + {1^2} - 1 - 1 = 0\\\mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0.2 = 0\\ \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right).\end{array}\)

e) \(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x + 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to 1} \left( {x - 1} \right) = 1 - 1 = 0\\\frac{{\mathop {\lim }\limits_{x \to 1} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 1} g\left( x \right)}} = \frac{0}{2} = 0\\ \Rightarrow \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{\mathop {\lim }\limits_{x \to 1} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 1} g\left( x \right)}}.\end{array}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Với bất kì \({x_0} \in \mathbb{R}\), ta có:

\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{e^x} - {e^{{x_0}}}}}{{x - {x_0}}}\)

Đặt \(x = {x_0} + \Delta x\). Ta có:

\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{{x_0} + \Delta x}} - {e^{{x_0}}}}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{{x_0}}}.{e^{\Delta x}} - {e^{{x_0}}}}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{{x_0}}}.\left( {{e^{\Delta x}} - 1} \right)}}{{\Delta x}}\\ &  = \mathop {\lim }\limits_{\Delta x \to 0} {e^{{x_0}}}.\mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{\Delta x}} - 1}}{{\Delta x}} = {e^{{x_0}}}.1 = {e^{{x_0}}}\end{array}\)

Vậy \({\left( {{e^x}} \right)^\prime } = {e^x}\) trên \(\mathbb{R}\).

b) Với bất kì \({x_0} > 0\), ta có:

\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln {\rm{x}} - \ln {{\rm{x}}_0}}}{{x - {x_0}}}\)

Đặt \(x = {x_0} + \Delta x\). Ta có:

\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {{x_0} + \Delta x} \right) - \ln {{\rm{x}}_0}}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {\frac{{{x_0} + \Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\Delta x}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{1}{{{x_0}}}.\frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\frac{{\Delta x}}{{{x_0}}}}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{1}{{{x_0}}}.\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\frac{{\Delta x}}{{{x_0}}}}}\end{array}\)

Đặt \(\frac{{\Delta x}}{{{x_0}}} = t\). Lại có: \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{1}{{{x_0}}} = \frac{1}{{{x_0}}};\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\frac{{\Delta x}}{{{x_0}}}}} = \mathop {\lim }\limits_{t \to 0} \frac{{\ln \left( {1 + t} \right)}}{t} = 1\)

Vậy \(f'\left( {{x_0}} \right) = \frac{1}{{{x_0}}}.1 = \frac{1}{{{x_0}}}\)

Vậy \({\left( {\ln x} \right)^\prime } = \frac{1}{x}\) trên khoảng \(\left( {0; + \infty } \right)\).

15 tháng 5 2016

kì vọng là lợi nhuận tối thiểu hả b?

15 tháng 5 2016

trung bình bn 

Giải sách bài tập Toán 11 | Giải sbt Toán 11 thì f(x) thỏa mãn được tất cả các điều kiện đã nêu

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Với \(k = 0\), hàm số có dạng \(P\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{4,5x}&{khi\,\,0 < x \le 400}\\{4x}&{khi\,\,x > 400}\end{array}} \right.\)

• Với mọi \({x_0} \in \left( {0;400} \right)\), ta có:

\(\mathop {\lim }\limits_{x \to {x_0}} P\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \left( {4,5x} \right) = 4,5\mathop {\lim }\limits_{x \to {x_0}} x = 4,5{x_0} = P\left( {{x_0}} \right)\)

Vậy hàm số \(y = P\left( x \right)\) liên tục tại mọi điểm \({x_0} \in \left( {0;400} \right)\).

• Với mọi \({x_0} \in \left( {400; + \infty } \right)\), ta có:

\(\mathop {\lim }\limits_{x \to {x_0}} P\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \left( {4x} \right) = 4\mathop {\lim }\limits_{x \to {x_0}} x = 4{x_0} = P\left( {{x_0}} \right)\)

Vậy hàm số \(y = P\left( x \right)\) liên tục tại mọi điểm \({x_0} \in \left( {400; + \infty } \right)\).

• \(f\left( {400} \right) = 4,5.400 = 1800\).

\(\mathop {\lim }\limits_{x \to {{400}^ + }} P\left( x \right) = \mathop {\lim }\limits_{x \to {{400}^ + }} \left( {4x} \right) = 4\mathop {\lim }\limits_{x \to {{400}^ + }} x = 4.400 = 1600\).

\(\mathop {\lim }\limits_{x \to {{400}^ - }} P\left( x \right) = \mathop {\lim }\limits_{x \to {{400}^ - }} \left( {4,5x} \right) = 4,5.\mathop {\lim }\limits_{x \to {{400}^ - }} x = 4,5.400 = 1800\).

Vì \(\mathop {\lim }\limits_{x \to {{400}^ + }} P\left( x \right) \ne \mathop {\lim }\limits_{x \to {{400}^ - }} {\rm{ }}P\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 400} P\left( x \right)\).

Vậy hàm số không liên tục tại điểm \({x_0} = 400\).

Vậy hàm số \(y = f\left( x \right)\) không liên tục trên \(\left( {0; + \infty } \right)\).

b) Xét hàm số \(P\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{4,5x}&{khi\,\,0 < x \le 400}\\{4x + k}&{khi\,\,x > 400}\end{array}} \right.\) (\(k\) là một hãng số)

Hàm số liên tục trên các khoảng \(\left( {0;400} \right)\) và \(\left( {400; + \infty } \right)\).

Ta có: \(f\left( {400} \right) = 4,5.400 = 1800\).

\(\mathop {\lim }\limits_{x \to {{400}^ + }} P\left( x \right) = \mathop {\lim }\limits_{x \to {{400}^ + }} \left( {4x + k} \right) = 4\mathop {\lim }\limits_{x \to {{400}^ + }} x + \mathop {\lim }\limits_{x \to {{400}^ + }} k = 4.400 + k = 1600 + k\).

\(\mathop {\lim }\limits_{x \to {{400}^ - }} P\left( x \right) = \mathop {\lim }\limits_{x \to {{400}^ - }} \left( {4,5x} \right) = 4,5.\mathop {\lim }\limits_{x \to {{400}^ - }} x = 4,5.400 = 1800\).

Để hàm số \(y = P\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right)\) thì hàm số \(y = P\left( x \right)\) phải liên tục tại điểm \({x_0} = 400\).

Để hàm số liên tục tại điểm \({x_0} = 400\) thì:

\(\mathop {\lim }\limits_{x \to {{400}^ + }} P\left( x \right) = \mathop {\lim }\limits_{x \to {{400}^ - }} P\left( x \right) = f\left( {400} \right) \Leftrightarrow 1600 + k = 1800 \Leftrightarrow k = 200\)

Vậy với \(k = 200\) thì hàm số \(P\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right)\)