Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
CA,CE là tiếp tuyến
nên CA=CE và OC là phân giác của góc AOE(1)
Xét (O) co
DE,DB là tiép tuyến
nên DE=DB và OD là phân giác của góc BOE(2)
CD=CE+ED
=>CD=CA+DB
b: Từ (1), (2) suy ra góc COD=1/2*180=90 độ
a: Xét (O) có
CA,CE là tiếp tuyến
nên CA=CE và OC là phân giác của góc AOE(1)
Xét (O) có
DE,DB là tiếp tuyến
nên DE=DB và OD là phân giác của góc EOB(2)
CE+ED=CD
=>CD=CA+DB
b: Từ (1), (2) suy ra góc COD=1/2*180=90 độ
c: CA=CE
OA=OE
Do đó: CO là trung trực của AE
DE=DB
OE=OB
Do đó: DO là trung trực của EB
Xét tứ giác EIOK có
góc EIO=góc EKO=góc IOK=90 độ
nên EIOK là hình chữ nhật
a: Xét (O) có
CE là tiếp tuyến
CA là tiếp tuyến
Do đó: CE=CA
Xét (O) có
DE là tiếp tuyến
DB là tiếp tuyến
Do đó: DE=DB
Ta có: DE+CE=DC
nên CD=AC+BD
a: Xét (O) có
CE,CA là các tiếp tuyến
nên CE=CA và OC là phân giác của góc AOE(1)
Xét (O) có
DE,DB là các tiếp tuyến
nên DE=DB vàOD là phân giác của góc BOE(2)
CD=CE+ED
=>CD=CA+BD
b: Từ (1), (2) suy ra góc COD=1/2*180=90 độ
c: AC*BD=CE*ED=OE^2=R^2=36cm
a: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: OC là tia phân giác của góc MOA(1)
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: OD là tia phân giác của góc MOB(2)
Từ (1) và (2) suy ra ΔCOD vuông tại O
a: Xét (O) có
CE là tiếp tuyến có E là tiếp điểm
CA là tiếp tuyến có A là tiếp điểm
Do đó: CE=CA
Xét (O) có
DB là tiếp tuyến có B là tiếp điểm
DE là tiếp tuyến có E là tiếp điểm
Do đó: DB=DE
Ta có: CD=CE+ED
nên CD=CA+DB
a: Xét (O) có
CE là tiếp tuyến
CA là tiếp tuyến
Do đó: CE=CA
Xét (O) có
DE là tiếp tuyến
DB là tiếp tuyến
Do đó: DE=DB
Ta có: CE+DE=CD
nên CD=CA+DB
a: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: OC là tia phân giác của góc MOA(1)
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
DO đó; OD là tia phân giác của góc MOB(2)
Từ (1) và (2) suy ra \(\widehat{DOC}=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
hay ΔODC vuông tại O
b: Xét ΔODC vuông tại O có OM là đường cao
nên \(MC\cdot MD=OM^2\)
a: Xét (O) có
CA,CE là các tiếp tuyến
Do đó: CA=CE và OC là phân giác của góc AOE
Xét (O) có
DE,DB là các tiếp tuyến
Do đó: DE=DB và OD là phân giác của góc EOB
Ta có: CA+DB
=CE+DE
=CD
b: Ta có: OC là phân giác của góc AOE
=>\(\widehat{AOE}=2\cdot\widehat{EOC}\)
OD là phân giác của góc EOB
=>\(\widehat{EOB}=2\cdot\widehat{EOD}\)
Ta có: \(\widehat{AOE}+\widehat{BOE}=180^0\)(hai góc kề bù)
=>\(2\cdot\widehat{EOC}+2\cdot\widehat{EOD}=180^0\)
=>\(2\cdot\left(\widehat{EOC}+\widehat{EOD}\right)=180^0\)
=>\(2\cdot\widehat{COD}=180^0\)
=>\(\widehat{COD}=90^0\)