Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)x12+x6+1
Lần lượt thêm và bớt x9; x3;x6 ta đc:
=x12+x9-x6-x9-x6-x3+x6+x3+1
=x6(x6+x3+1)-x3(x6+x3+1)+(x6+x3+1)
=(x6-x3+1)(x6+x3+1)
b)x4-7x3-14x2-7x+1
=x4-3x3+x2-4x3+12x2-4x+x2-3x+1
=x2(x2-3x+1)-4x(x2-3x+1)+(x2-3x+1)
=(x2-4x+1)(x2-3x+1)
a, \(x^4-x^3-x^3+x^2-x^2+x+x-1\)\(1\)
=\(x^3\left(x-1\right)+x^2\left(x-1\right)-x\left(x-1\right)+\left(x-1\right)\)
=\(\left(x-1\right)\left(x^3+x^2-x+1\right)\)
b, \(\left(ab-1\right)^2+\left(a+b\right)^2\)
=\(a^2b^2-2ab+1+a^2+2ab+b^2\)
=\(a^2b^2+a^2+b^2+1\)
=\(a^2\left(b^2+1\right)+\left(b^2+1\right)\)
=\(\left(b^2+1\right)\left(a^2+1\right)\)
c,\(x^4+2x^3+2x^2+2x+1\)
=\(x^4+x^3+x^3+x^2+x^2+x+x+1\)
=\(x^3\left(x+1\right)+x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)\)
=\(\left(x+1\right)\left(x^3+x^2+x+1\right)\)
=\(\left(x+1\right)^2\left(x^2+1\right)\)
mk ghi đáp án, còn lại bạn tự biến đổi
a) \(2x^3-x^2+5x+3=\left(2x+1\right)\left(x^2-x+3\right)\)
b) \(x^3+5x^2+8x+4=\left(x+1\right)\left(x+2\right)^2\)
c) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
d) \(4x^4+1=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)
e) \(x^4-7x^3+14x^2-7x+1=\left(x^2-4x+1\right)\left(x^2-3x+1\right)\)
mk làm chi tiết theo yêu của của người hỏi đề:
a) \(2x^3-x^2+5x+3\)
\(=\left(2x^3-2x^2+6x\right)+\left(x^2-x+3\right)\)
\(=2x\left(x^2-x+3\right)+\left(x^2-x+3\right)\)
\(=\left(2x+1\right)\left(x^2-x+3\right)\)
b) \(x^3+5x^2+8x+4\)
\(=\left(x^3+4x^2+4x\right)+\left(x^2+4x+4\right)\)
\(=x\left(x^2+4x+4\right)+\left(x^2+4x+4\right)\)
\(=\left(x+1\right)\left(x^2+4x+4\right)\)
\(=\left(x+1\right)\left(x+2\right)^2\)
\(\left(x+1\right)^2-\left(x-1\right)^2\)
\(\Leftrightarrow\left(x+1-x+1\right)\left(x+1+x-1\right)\)
\(\Leftrightarrow2.2x=4x\)
p/s tham khảo nha
\(a^2-b^2-a+b\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)-\left(a-b\right)\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-1\right)\)
p/s tham khảo
a)\(\left(4x^3-xy^2+y^3\right)\left(x^2y+2xy^2-2y^3\right)\)
\(=x^2y\left(4x^3-xy^2+y^3\right)+2xy^2\left(4x^3-xy^2+y^3\right)\)
\(-2y^3\left(4x^3-xy^2+y^3\right)\)
\(=4x^5y-x^3y^3+x^2y^4+8x^4y^2-2x^2y^4+2xy^5\)
\(-8x^3y^3+2xy^5-2y^6\)
\(=-2y^6+4x^5y+\left(2xy^5+2xy^5\right)+8x^4y^2+\left(x^2y^4-2x^2y^4\right)\)
\(-\left(x^3y^3+8x^3y^3\right)\)
\(=-2y^6+4x^5y+4xy^5+8x^4y^2-x^2y^4-9x^3y^3\)
b)
(!) \(2\left(x+y\right)^2-7\left(x+y\right)+5\)
\(=2\left(x+y\right)^2-2\left(x+y\right)-5\left(x+y\right)+5\)
\(=2\left(x+y\right)\left(x+y-1\right)-5\left(x+y-1\right)\)
\(=\left(2x+2y-5\right)\left(x+y-1\right)\)
(!!) \(\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(=\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-x^2-y^2-z^2\)
\(=2\left(xy+yz+zx\right)\)
Đây, bản full đây thím, tớ thực sự đã kiên nhẫn lắm đấy ...
a)\(4\left(x^2-y^2\right)-8\left(x-ay\right)-4\left(a^2-1\right)=4\left(x^2-y^2-2x+2ay-a^2+1\right)\)
\(=4\left[\left(x^2-2x+1\right)-\left(a^2-2ay+y^2\right)\right]\)
\(=4\left[\left(x-1\right)^2-\left(a-y\right)^2\right]\)
\(=4\left(x-1-a+y\right)\left(x-1+a-y\right)\)
b)\(\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1\right)-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)
\(=\left(x+y-1\right)\left(x^2-xy+y^2+x+y+1\right)\)
c)\(x^3-1+5x^2-5+3x-3=\left(x-1\right)\left(x^2+x+1\right)+5\left(x^2-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)+5\left(x-1\right)\left(x+1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)+\left(x-1\right)\left(5x+5\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1+5x+5+3\right)\)
\(=\left(x-1\right)\left(x^2+6x+9\right)\)
\(=\left(x-1\right)\left(x+3\right)^2\)
d)\(a^5+a^4+a^3+a^2+a+1=a^4\left(a+1\right)+a^2\left(a+1\right)+\left(a+1\right)\)
\(=\left(a+1\right)\left(a^4+a^2+1\right)\)
\(=\left(a+1\right)\left(a^4+2a^2+1-a^2\right)\)
\(=\left(a+1\right)\left[\left(a^2+1\right)^2-a^2\right]\)
\(=\left(a+1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)\)
e)\(x^3-3x^2+3x-1-y^3=\left(x-1\right)^3-y^3\)
\(=\left(x-1-y\right)\left[\left(x-1\right)^2+\left(x-1\right)y+y^2\right]\)
\(=\left(x-1-y\right)\left(x^2-2x+1+xy-y+y^2\right)\)
f)\(5x^3-3x^2y-45xy^2+27y^3=5x\left(x^2-9y^2\right)-3y\left(x^2-9y^2\right)\)
\(=\left(x^2-9y^2\right)\left(5x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y\right)\left(5x-3y\right)\)
g)\(3x^2\left(a-b+c\right)+36xy\left(a-b+c\right)+108y^2\left(a-b+c\right)\)
\(=\left(a-b+c\right)\left(3x^2+36xy+108y^2\right)\)
\(=3\left(a-b+c\right)\left(x^2+12xy+36y^2\right)\)
\(=3\left(a-b+c\right)\left(x+6y\right)^2\)
a/ \(4\left(x^2-y^2\right)-8\left(x-ay\right)-4\left(a^2-1\right)\)
\(=\left(4x^2-8x+4\right)-\left(4y^2-8ay+4a^2\right)\)
\(=\left(2x-2\right)^2-\left(2y-2a\right)^2=\left(2x-2+2y-2a\right)\left(2x-2-2y+2a\right)\)
b/ \(\left(x+y\right)^3-1-3xy\left(x+y-1\right)=\left(x+y-1\right)\left(x^2+y^2+2xy+x+y+1\right)-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)\)
Giải giúp bạn 2 bài tiêu biểu thôi nha
tách ra như bth ấy
Câu 1 :
a) \(x^3-5x^2-14x\)
\(=x^3-7x^2+2x^2-14x\)
\(=x^2\left(x-7\right)+2x\left(x-7\right)\)
\(=\left(x-7\right)\left(x^2+2x\right)\)
\(=x\left(x-7\right)\left(x+2\right)\)
b) \(a^4+a^2+1\)
\(=\left(a^2\right)^2+2a^2+1-a^2\)
\(=\left(a^2+1\right)-a^2\)
\(=\left(a^2-a+1\right)\left(a^2+a+1\right)\)
c) \(x^4+64\)
\(=\left(x^2\right)^2+2\cdot x^2\cdot8+8^2-2\cdot x^2\cdot8\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)
Câu 2 :
a) \(\left(a-b\right)^2=a^2-2ab+b^2\)
Ta có : \(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\Rightarrow a^2+b^2=\left(a+b\right)^2-2ab=7^2-2\cdot14=25\)
\(\Rightarrow\left(a-b\right)^2=25-2\cdot12=1\)
b) tương tự