K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

x^2+2x>5x

x^2-3x>0

x(x-3)>0

=>x>0 và x-3 >0 hoặc x<0 và x-3<0

+x>0 va x-3>0

=> x>0 va x>3

=>x>3

 +x<0 và x-3<0

=> x<0 và x<3 v

 => x<0

Vậy x>3 hoặc x<0

1 tháng 8 2016

x(x+2) > 5x 

x+2 > 5x :x

x+2  > 5

x  > 5 - 2 

x > 3

20 tháng 4 2019

1a

x^2-8x<0

<=> x(x-8)<0

th1: x<0 và x-8>0

 x<0 và x>8

<=> 8<x<0 ( vô lý)

th2: x>0 và x-8<0

<=> x>0 và x<8

<=> 0<x<8( tm)

vậy........

20 tháng 4 2019

a) \(x^2-8x< 0\)

\(\Leftrightarrow x\left(x-8\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x>0\\x-8< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x-8>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>0\\x< 8\end{cases}}\)         hoặc   \(\hept{\begin{cases}x< 0\\x>8\end{cases}}\) (loại)

\(\Leftrightarrow0< x< 8\)

b) \(x^2< 6x-5\)

\(\Leftrightarrow x^2-6x+5< 0\)

\(\Leftrightarrow x^2-x-5x+5< 0\)

\(\Leftrightarrow x\left(x-1\right)-5\left(x-1\right)< 0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x-1>0\\x-5< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-1< 0\\x-5>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>1\\x< 5\end{cases}}\)          hoặc  \(\hept{\begin{cases}x< 1\\x>5\end{cases}}\) (loại)

\(\Leftrightarrow1< x< 5\)

c) \(\frac{x-3}{x-2}< 0\)

\(\Leftrightarrow\hept{\begin{cases}x-3>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3< 0\\x-2>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>3\\x< 2\end{cases}}\)  (loại)  hoặc  \(\hept{\begin{cases}x< 3\\x>2\end{cases}}\)

\(\Leftrightarrow2< x< 3\)

d) \(\frac{x+1}{x-3}>2\) (ĐK: \(x\ne3\) )

\(\Leftrightarrow\frac{x+1}{x-3}-2>0\)

\(\Leftrightarrow\frac{x+1-2\left(x-3\right)}{x-3}>0\)

\(\Leftrightarrow\frac{-x+7}{x-3}>0\)

\(\Leftrightarrow\hept{\begin{cases}-x+7>0\\x-3>0\end{cases}}\) hoặc \(\hept{\begin{cases}-x+7< 0\\x-3< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-x>-7\\x>3\end{cases}}\)     hoặc  \(\hept{\begin{cases}-x< -7\\x< 3\end{cases}}\)  

\(\Leftrightarrow\hept{\begin{cases}x< 7\\x>3\end{cases}}\)              hoặc   \(\hept{\begin{cases}x>7\\x< 3\end{cases}}\) (loại)

\(\Leftrightarrow3< x< 7\)

14 tháng 6 2020

2x + 4 > 5x - 11

<=> 2x - 5x > -11 - 4

<=> -3x > -15

<=> -3x : ( -3 ) < -15 : ( -3 )

<=> x < 5

Vậy tập nghiệm của bất phương trình là x < 5 

21 tháng 4 2018

bai dai qua

21 tháng 4 2018

a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9

                           (9+x)= -9-x khi 9+x <0 hoặc x <-9

1)pt   9+x=2 với x >_ -9

    <=> x  = 2-9

  <=>  x=-7 thỏa mãn điều kiện (TMDK)

2) pt   -9-x=2 với x<-9

         <=> -x=2+9

             <=>  -x=11

                       x= -11 TMDK

 vậy pt có tập nghiệm S={-7;-9}

các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd

nhu cau o trên mk lam 9+x>_0    hoặc x>_0

với số âm thi -2x>_0  hoặc x <_ 0  nha

17 tháng 8 2019

a, -2x>15  x>-15/2            c, th1 x+2>0 vs x+3 <0 suy ra x>-2 vs x<-3     . th2 x+2<0,x+3>0 suy ra x<-2 ,x>-3

b, 112-x2>0

x2<112 x<11

17 tháng 8 2019

a) \(3x-8>5x+7\)

\(\Leftrightarrow-8>5x+7-3x\)

\(\Leftrightarrow-8>2x+7\)

\(\Leftrightarrow-8-7>2x\)

\(\Leftrightarrow-15>2x\)

\(\Leftrightarrow-\frac{15}{2}>x\)

\(\Rightarrow x< -\frac{15}{2}\)

b) \(\left(11-x\right)\left(11+x\right)>0\)

\(\Leftrightarrow x=\pm11\)

\(\Rightarrow-11< x< 11\)

c) \(\left(x+2\right)\left(x+3\right)< 0\)

\(\Leftrightarrow x=-2;-3\)

\(\Rightarrow-3< x< -2\)

14 tháng 4 2018

\(a,x\left(x-5\right)+6< 0\Leftrightarrow\left(x+6\right)\left(x-5\right)< 0\)

\(\orbr{\begin{cases}x+6< 0\\x-5< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< -6\\x< 5\end{cases}}}\)

\(b,x^2+\left(x-2\right)\left(x+2\right)>2x\left(x-2\right)\)

\(\Leftrightarrow x^2+x^2-4>2x^2-4x\Leftrightarrow-4>-4x\)

\(\Leftrightarrow-4x< -4\Rightarrow x>1\)

\(c,\left(x-3\right)\left(x-3\right)+\left(x+5\right)\left(x+5\right)< 2\left(x-3\left(x+5\right)\right)\)

\(\Leftrightarrow x^2-6x+9+x^2+10x+25< 2x^2+4x-30\)

\(\Leftrightarrow2x^2-2x^2+4x-4x< -30-34\)

\(\Leftrightarrow0x< -64\)

bất phương trình vô nghiệm

BPT <=> -3x2+15x-12>0

<=> x2-5x+4<0

<=> (x-1)(x-4)<0

<=> \(\hept{\begin{cases}x-1>0\\x-4< 0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1< 0\\x-4>0\end{cases}}\)(loại)

<=> 1<x<4

Ta có : x+ x2 + 2x - 16 \(\ge0\)

<=> \(x^3-2x^2+3x^2-6x+8x-16\ge0\)

<=> \(x^2\left(x-2\right)+3x\left(x-2\right)+8\left(x-2\right)\ge0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+8\right)\ge0\)

Vì \(x^2+3x+8>0\forall x\)

Nên : \(x-2\ge0\)

\(\Leftrightarrow x\ge2\)

24 tháng 5 2018

Cám ơn At the speed of light!

19 tháng 5 2017

a) \(2-x\ge0\Leftrightarrow x\le2\)(chuyển x sang bên phải rồi đảo vế)

b) \(2+x\ge0\Leftrightarrow x\ge-2\)(cộng cả hai vế với -2)

c) \(7-x\ge0\Leftrightarrow x\le7\)(giống phần a)

Bạn tự kết luận nha!!

27 tháng 4 2019

x + x - 1/2 > x - 2/3 

<=> 2x - 1/2 > x - 2/3 

<=> x > -1/6 

x/3 + 3x - 4/5 >= 2x - 3

<=> 4x/3 >= -11/5

<=> 4x >= -33/5

<=> x >= -33/20 

Tập nghiệm chung của 2 bất phương trình là : x >-1/6