Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+\frac{4b}{c^2}\right)\left(b+\frac{4c}{a^2}\right)\left(c+\frac{4a}{b^2}\right)\ge2\sqrt{\frac{4ab}{c^2}}.2\sqrt{\frac{4bc}{a^2}}.2\sqrt{\frac{4ac}{b^2}}=64\)
Dấu "=" xảy ra khi \(a=b=c=2\)
\(\frac{a^3}{b}+ab\ge2a^2\) ; \(\frac{b^3}{c}+bc\ge2b^2\); \(\frac{c^3}{a}+ac\ge2c^2\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\ge2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)=ab+bc+ca\)
Dấu "=" xảy ra khi \(a=b=c\)
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Lời giải:
Áp dụng BĐT Cô-si cho các số thực dương ta có:
$\frac{ab}{c}+\frac{bc}{a}\geq 2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b$
$\frac{ab}{c}+\frac{ca}{b}\geq 2a$
$\frac{bc}{a}+\frac{ca}{b}\geq 2c$
Cộng theo vế và thu gọn ta có:
$\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\geq a+b+c$ (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Ta viết lại bất đẳng thức trên thành:
\(\frac{a-b}{b}-\frac{a-b}{c}+\frac{c-a}{a}-\frac{c-a}{c}\ge\frac{\left(a-c\right)^2}{\left(a+b\right)\left(b+c\right)}\)
Hay: \(\frac{\left(a-b\right)\left(c-b\right)}{bc}+\frac{\left(c-a\right)^2}{ca}\ge\frac{\left(a-c\right)^2}{\left(a+b\right)\left(b+c\right)}\)
Tiếp tục khai triển và thu gọn ta được:
\(\Leftrightarrow b\left(c-a\right)^2\left(b^2+ab+bc\right)\ge a\left(a-b\right)\left(b-c\right)\left(a+b\right)\left(b+c\right)\)
\(\Leftrightarrow\left(b-ac\right)^2\ge0\)
Bất đẳng thức cuối cùng luôn đúng hay bài toán được chứng minh xong.
Bài 1. Ta có: \(a\left(a+2\right)\left(a-1\right)^2\ge0\therefore\frac{1}{4a^2-2a+1}\ge\frac{1}{a^4+a^2+1}\)
Thiết lập tương tự 2 BĐT còn lại và cộng theo vế rồi dùng Vasc (https://olm.vn/hoi-dap/detail/255345443802.html)
Bài 5: Bất đẳng thức này đúng với mọi a, b, c là các số thực. Chứng minh:
Quy đồng và chú ý các mẫu thức đều không âm, ta cần chứng minh:
\(\frac{1}{2}\left(a^2+b^2+c^2-ab-bc-ca\right)\Sigma\left[\left(a^2+b^2\right)+2c^2\right]\left(a-b\right)^2\ge0\)
Đây là điều hiển nhiên.
Sử dụng BĐT Cauchy-Schwarz ta có: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca}\)
Ta sẽ chứng minh \(\frac{\left(a+b+c\right)^2}{ab+bc+ca}\ge\frac{9}{a+b+c}\Leftrightarrow\frac{9}{a+b+c}\le\frac{3}{ab+bc+ca}+2\)
Đặt a+b+c=t ta cần chứng minh \(\frac{6}{t^2-3}+2\ge\frac{9}{t}\Leftrightarrow\left(t+3\right)\left(t-3\right)^2\ge0\)
Dấu "=" xảy ra <=> a=b=c=1
Ok thanks, mặc dù ngay chỗ cuối đúng thì phải là (2t+3)(t-3)2 >= 0
Nhưng hiểu rồi là OK :)
Áp dụng bất đẳng thức Bunhiacopxki ta được:
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(a+b+c\right)}\)
\(\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(a+b+c\right)}\)
Cộng theo vế hai bất đẳng thức trên ta được:
\(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\ge\frac{3\left(ab+bc+ca\right)}{a+b+c}\)
Bất đẳng thức được chứng minh. Dấu đẳng thức xảy ra khi \(a=b=c\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq \frac{(a+b+c)^2}{b+c+a}=a+b+c\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Cách khác:
Áp dụng BĐT Cô-si cho các số dương ta có:
$\frac{a^2}{b}+b\geq 2a$
$\frac{b^2}{c}+c\geq 2b$
$\frac{c^2}{a}+a\geq 2c$
Cộng theo vế và thu gọn ta được:
$\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq a+b+c$ (đpcm)
Dấu "=" xảy ra khi $a=b=c$