Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
b)\(\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\)
\(=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+....+\frac{1}{61}-\frac{1}{66}\)
\(=\frac{1}{11}-\frac{1}{66}\)
\(=\frac{5}{66}\)
a,\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
ta có:
\(\frac{1}{1.2}=\frac{2-1}{1.2}=\frac{2}{1.2}-\frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{2.3}=\frac{3-2}{2.3}=\frac{3}{2.3}-\frac{2}{2.3}=\frac{1}{2}-\frac{1}{3}\)
...
\(\frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
=\(1-\frac{1}{100}=\frac{99}{100}\)
b,
\(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.16}+...+\frac{5}{61.66}\)
ta có:
\(\frac{5}{11.16}=\frac{16-11}{11.16}=\frac{16}{11.16}-\frac{11}{11.16}=\frac{1}{11}-\frac{1}{16}\)
\(\frac{5}{16.21}=\frac{21-16}{16.21}=\frac{21}{16.21}-\frac{16}{16.21}=\frac{1}{16}-\frac{1}{21}\)
...
\(\frac{5}{61.66}=\frac{66-61}{61.66}=\frac{66}{61.66}-\frac{61}{61.66}=\frac{1}{61}-\frac{1}{66}\)
= \(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
=\(\frac{1}{11}-\frac{1}{66}\)=\(\frac{5}{66}\)
\(a,1-2+3-4+5-6+......+199-200\)
\(=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+.....+\left(199-200\right)\)( 100 cặp )
\(=-1+\left(-1\right)+\left(-1\right)+........+\left(-1\right)\)( 100 số hạng )
\(=-1.100\)
\(=-100\)
\(a.1-2+3-4+5-6+...+199-200\)
\(=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+...+\left(199-200\right)\) (có tất cả \(200:2=100\)cặp)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)
\(=\left(-1\right).200=-200\)
\(b.1+2-3-4+5+6-7-8+...+97+98-99-100\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(97+98-99-100\right)\) (có \(100:4=25\)cặp)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(=\left(-4\right).25=-100\)
\(c.1+\left(-6\right)+11+\left(-16\right)+...+21+\left(-26\right)\)
\(=\left[1+\left(-6\right)\right]+\left[11+\left(-16\right)\right]+...+\left[21+\left(-26\right)\right]\) (có tất cả \(26:2=13\)cặp)
\(=\left(-5\right)+\left(-5\right)+...+\left(-5\right)\)
\(=-5.13=-65\)
Bài 1:
a) \(\frac{16}{15}.\frac{\left(-5\right)}{14}.\frac{54}{24}.\frac{56}{21}\)
\(=\frac{4.2.2}{5.3}.\frac{\left(-5\right)}{2.7}.\frac{3.3}{4}.\frac{8}{3}\)
\(=\frac{4.2.2.\left(-5\right).3.3.8}{5.3.2.7.4.3}\)
\(=\frac{-16}{7}\)
b) \(\frac{7}{3}.\frac{\left(-5\right)}{2}.\frac{15}{21}.\frac{4}{\left(-5\right)}\)
\(=\frac{7}{3}.\frac{\left(-5\right)}{2}.\frac{5}{7}.\frac{2.2}{\left(-5\right)}\)
\(=\frac{7.\left(-5\right).5.2.2}{3.2.7.\left(-5\right)}\)
\(=\frac{10}{3}\)
Bài 2:
a) \(\frac{21}{24}.\frac{11}{9}.\frac{5}{7}=\frac{7}{8}.\frac{11}{9}.\frac{5}{7}=\frac{11.5}{8.9}=\frac{55}{72}\)
b) \(\frac{5}{23}.\frac{17}{26}+\frac{5}{23}.\frac{9}{26}\)
\(=\frac{5}{23}.\left(\frac{17}{26}+\frac{9}{26}\right)=\frac{5}{23}.1=\frac{5}{23}\)
c) \(\left(\frac{3}{29}-\frac{1}{5}\right).\frac{29}{3}=\frac{3}{29}.\frac{29}{3}-\frac{1}{5}.\frac{29}{3}\)
\(=1-1\frac{14}{15}=\frac{14}{15}\)
Bài 3:
a) x/5 = 2/5
=> x =2
b) -4/x = 20/14 = 10/7
=> -4/x = 10/7
=> x.10 = (-4).7
x.10 = - 28
x= -28 :10
x= -2,8
c) 4/7 = 12/x = 12/ 21
=> 12/x = 12/21
=> x = 21
d) 3/7 = x / 21 = 9/21
=> x/21 = 9/21
=> x= 9
a) 1 - 3 + 5 - 7 + 9 - 11
= (1 - 3) + (5 - 7) + (9 - 11)
= (-2) + (-2) + (-2)
= -6
b) -14 - 16 - 18 - ... - 92
= - (14 + 16 + 18 + .... + 92)
Áp dụng công thức tính dãy số ta có :
14 + 16 + 18 + .... + 92 = 2120
= -2120
c) 15 + 18 + 21 + .... + 63 + 66 + 70
= (15 + 18 + 21 + ..... + 66) + 70
Áp dụng công thức tính dãy số ta có :
15 + 18 + ..... + 66 = 729
= 729 + 70
= 8799
d) 2 - 3 + 4 - 5 + 6 - 7 + 8 - 9 + 10
= (2 - 3) + (4 - 5) + (6 - 7) + (8 - 9) + 10
= (-1) + (-1) + (-1) + (-1) + 10
= 6
a. \(C=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
\(=\frac{1}{11}-\frac{1}{66}=\frac{5}{66}\)
b. \(D=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{4}{4.7}+...+\frac{3}{97.100}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{100}\right)=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)
\(C=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-....-\frac{1}{66}\)
\(C=\frac{1}{11}-\frac{1}{66}=\frac{5}{66}\)
\(D=\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-....-\frac{1}{100}\right)\)
\(D=\frac{2}{3}.\left(1-\frac{1}{100}\right)=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)