Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, với x > 0 ; x khác 1 ; 4
a, \(P=\left(\dfrac{x+\sqrt{x}-x-2}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}-4}{x-1}\right)\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}:\dfrac{x-4}{x-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)
b, Ta có P > 0 => \(\sqrt{x}-1>0\Leftrightarrow x>1\)
Kết hợp đk vậy x > 1 ; x khác 4
các bn ơi đoạn sau mik viết nhầm đấy bỏ phần không có ngặc đi nha
a) \(A=\left(\frac{4\sqrt{x}}{\sqrt{x}+2}-\frac{8x}{x-4}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
\(\Leftrightarrow A=\frac{4\sqrt{x}\left(\sqrt{x}-2\right)-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\frac{\sqrt{x}-1-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(\Leftrightarrow A=\frac{4x-8\sqrt{x}-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\frac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(\Leftrightarrow A=\frac{-4x-8\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\frac{-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(\Leftrightarrow A=\frac{-4\sqrt{x}}{\sqrt{x}-2}\cdot\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{-\sqrt{x}+3}\)
\(\Leftrightarrow A=\frac{4x}{\sqrt{x}-3}\)
b) Để \(A=-1\)
\(\Leftrightarrow\frac{4x}{\sqrt{x}-3}=-1\)
\(\Leftrightarrow4x=3-\sqrt{x}\)
\(\Leftrightarrow4x+\sqrt{x}-3=0\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(4\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+1=0\\4\sqrt{x}-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-1\left(ktm\right)\\\sqrt{x}=\frac{3}{4}\Leftrightarrow x=\frac{9}{16}\left(tm\right)\end{cases}}\)
Vậy để \(A=-1\Leftrightarrow x=\frac{9}{16}\)
c) Khi \(x=36\)
\(\Leftrightarrow A=\frac{4\cdot36}{\sqrt{36}-3}=\frac{144}{3}=48\)
a) \(A=\left(\frac{4\sqrt{x}}{\sqrt{x}+2}-\frac{8x}{x-4}\right):\left(\frac{\sqrt{x}-1}{\left(x-2\sqrt{x}\right)}-\frac{2}{\sqrt{x}}\right)\)
\(A=\left(\frac{4\sqrt{x}}{\sqrt{x}+2}-\frac{8x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}}\right)\)
\(A=\left(\frac{4\sqrt{x}\left(\sqrt{x}-2\right)-8x}{\left(\sqrt{x}+2\right)\left(x-2\right)}\right):\left(\frac{\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(A=\left(\frac{4x-8\sqrt{x}-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(A=\left(\frac{-8\sqrt{x}-4x}{\left(\sqrt{x}+2\right)\sqrt{x}}\right):\left(\frac{3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(A=\left(\frac{-4\sqrt{x}\left(2-\sqrt{x}\right)}{\left(\sqrt{x}+2\right)\sqrt{x}}\right).\left(\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\right)\)
\(A=\frac{-4\sqrt{x}\left(2-\sqrt{x}\right).\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(3-\sqrt{x}\right)}\)
\(A=\frac{-4\sqrt{x}\left(2-\sqrt{x}\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(3-\sqrt{x}\right)}\)
.......... Đến đây bạn tự nhân đa thức với đa thức xog rút gọn nha.
\(đkxđ\Leftrightarrow\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
\(a,A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{1+\sqrt{x}}+\frac{2}{x-1}\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x\left(\sqrt{x}-1\right)}\right):\left(\frac{1-\sqrt{x}}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}-\frac{2}{1-x}\right)\)
\(=\left(\frac{x.\sqrt{x}}{x.\left(\sqrt{x}-1\right)}-\frac{1}{x\left(\sqrt{x}-1\right)}\right):\left(\frac{1-\sqrt{x}}{1-x}-\frac{2}{1-x}\right)\)
\(=\frac{x.\sqrt{x}-1}{x\left(\sqrt{x}-1\right)}.\frac{1-x}{-\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(x.\sqrt{x}-1\right)\left(1-x\right)}{x\left(1-x\right)}=\frac{\sqrt{x^3}-1}{x}\)
\(b,\)\(A=\frac{\sqrt{x}^3-1}{x}=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x}\)
Để A > 0 \(\Rightarrow\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x}>0\)
Mà \(x>0\)và \(x+\sqrt{x}+1>0\)( do x lớn hơn 0 )
\(\Rightarrow\sqrt{x}-1>0\)
\(\Rightarrow\sqrt{x}>1\Leftrightarrow\sqrt{x}>\sqrt{1}\Leftrightarrow x>1\)