Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến. Ví dụ: 2x3y2,...
3. Để cộng (hay trừ) ác đơn thức đồng dạng, ta cộng ( hay trừ ) các hệ số với nhau và giữ nguyên phần biến.
4. Khi đa thức P (x) có giá trị bằng 0 thì ta nói a là một nghiệm của đa thức đó.
Câu 1 mình không biết.
Câu 1:
2x^3y^2
3x^6y^3
4x^5y^9
6x^8y^3
7x^4y^8
Câu 2:
Hai đơnthức đồng dạng là hai đơn thức có hệ số khác không và cùng phần biến
VD:
2xyz^3 và 3xyz^3
Câu 3:
Để cộng trừ hai đơn thức đồng dạng ta giữ nguyên phần biến và cộng trừ phần hệ số
Câu 4:
Số a được gọi là nghiệm của đa thức khi
Nếu tại x=a đa thức p(x) có giá trị bằng không thì ta nói a là một nghiệm của đa thức p(x)
2:Trọng tâm(điểm này được gọi là G)
3:Tham khảo:https://giaibaitap123.com/giai-toan-lop-7-tap-2/bai-9-nghiem-cua-da-thuc-mot-bien/
5:Đối với tam giác thường:
CC
CGC
GCG
Đối với tam giac vuông là:
CHGN
6:Tham khảo:
https://hanghieugiatot.com/cach-chung-minh-duong-trung-truc-lop-7
Câu 1: Để xác định bậc của một đa thứ , bạn cần làm là tìm số mũ lớn nhất trong đa thức đó
Câu 2: Giao của 3 đường trung tuyến được gọi là trọng tâm
Câu 3: Nghiệm của đa thức là a nếu tại x=a đa thứ P(x) có giá thị bằng 0=> để tìm nghiệm của đa thức 1 biến, hãy cho đa thức đó bằng 0 và giải như cách giải phương trình 1 ẩn
Câu 4: Hai đa thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phân biến. Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến. Các số khác 0 được gọi là những đơn thức đồng dạng
Câu 5:
* Đối với tam giác thường
+ Trường hợp cạnh-cạnh-cạnh
+Trường hợp cạnh-góc-cạnh
+Trường hợp góc-cạnh-góc
*Đối với tam giác vuông
+ Trường hợp cạnh góc vuông-cạnh góc vuông
+Trường họp cạnh góc vuông- góc nhọn
+ Trường hợp cạnh huyền-góc nhọn
Câu 6:
Phương pháp 1: Chúng ta phải phải chứng minh rằng d\(\perp\)AB tại ngay trung điểm của AB
Phương pháp 2: Chứng minh rằng 2 điểm trên d cách đề 2 điểm A và B
Phương pháp 3: Dùng tính chất đường trung tuyến , đường cao
Phương pháp 4: Áp dụng tính chất đối xúng của trục
Phương pháp 5: Áp dụng tính chất nối tâm của 2 đường tròn cắt nhau ở 2 điểm
a) \(xy^2\): hệ số là 1; bậc là 3.
\(5x^3y^{ }\) : hệ số là 5; bậc là 4.
\(4x^2y^3\): hệ số là 4; bậc là 5.
\(2x^6y^{10}\) : hệ số là 2; bậc là 16.
\(3x^7y^5\) : hệ số là 3; bậc là 12.
b) Hai đơn thức đồng dạng là hai đơn thức có hệ số khác không và có cùng phần biến.
VD: \(xy^2\) và \(\dfrac{1}{2}xy^2\)
\(3x^2y^2\) và \(\dfrac{2}{3}x^2y^2\) ...
c) Quy tắc: Để cộng (hay trừ) các đơn thức đồng dạng, ta cộng (hay trừ) các hệ số với nhau và giữ nguyên phần biến.
d) Đa thức là một đơn thức hoặc một tổng của hai hay nhiều đơn thức. Mỗi đơn thức trong tổng gọi là một hạng tử của đa thức đó.
\(2x^2y^3z^4+3x^3y^2+\dfrac{1}{2}x^6y^7\)
=> Bậc của đa thức là 7.
e) A(x) = \(10x^5+4x^4+3x^3+5x^2+\left(-1\right)\)
f) Cho đa thức P(x)
Nếu tại x = a đa thức P(x) có giá trị bằng 0 thì ta nói a (hoặc x = a) là một nghiệm của đa thức P(x).
Có j sai thì bn cho mk xin ý kiến nha, đúng thì tick giúp mk nha! Chúc bn học tốt!
1. 5 đơn thức:
\(2x^2y^3\); \(3x^3y^4\); \(x^5y^6\); \(4xy^2\); \(5x^7y\)
2. Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến.
VD: \(2x^2y^3z^4\) và \(\dfrac{1}{2}x^2y^3z^4\)
3. Quy tắc cộng, trừ hai đơn thức đồng dạng:
Để cộng (hay trừ) các đơn thức đồng dạng, ta cộng (hay trừ) các hệ số với nhau và giữ nguyên phần biến.
4. Nếu tại x = a, đa thức P(x) có giá trị bằng 0 thì ta nói a (hoặc x = a) là một nghiệm của đa thức đó.
2.Định nghĩa: Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến.
VD: 2x2y3 và -52y3
3.Quy tắc: Để cộng (hay trừ) các đơn thức đồng dạng, ta cộng (hay trừ) các hệ số với nhau và giữ nguyên phần biến.
4.Cho đa thức P(x)
Nếu tại x = a đa thức P(x) có giá trị bằng 0 thì ta nói a là một nghiệm của đa thức P(x).
bn ơi hình như đề chưa ghi hết thì phải , cái chỗ :
2 : đơn thức nào sau đây đồng dạng .....
và :
3.......khẳng định nào sau đây là đúng ?
bạn ơi mình vt đúng theo đề
bạn giúp mình được ko ???
cảm ơn bạn trc
Trong sgk ấy
Nhưng mình mất sách rùi!Bạn trả lời hộ mình đi!