K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2015

câu 1: \(=\left(x^2+3x+1-1\right)\left(x^2+3x+1+1\right)=\left(x^2+3x\right)\left(x^2+3x+2\right)=x\left(x+3\right)\left(x+1\right)\left(x+2\right)\)

mình chỉ làm đc câu 1 thôi. hì hì ^^ cũng cho đúng nha :)

8 tháng 6 2016

Câu 1.

Tìm a,b để \(x^3+ax+b\)chia \(x+1\)dư 7 và chia cho \(x-3\)dư -5.

  • Thương của phép chia đa thức bậc 3 \(x^3+ax+b\)cho \(x+1\)là 1 đa thức bậc 2 có hệ số bậc 2 bằng 1, tổng quát ở dạng: \(x^2+mx+n\).
  • Số dư của phép chia này là 7 nên ta có:

\(x^3+ax+b=\left(x+1\right)\left(x^2+mx+n\right)+7\mid\forall x\in R\)

\(\Leftrightarrow x^3+ax+b=x^3+\left(m+1\right)x^2+\left(m+n\right)x+n+7\mid\forall x\in R\)

Để 2 đa thức này bằng nhau với mọi x thuộc R thì hệ số các bậc phải bằng nhau. Đồng nhất chúng ta có:

\(\hept{\begin{cases}m+1=0\\m+n=a\\n+7=b\end{cases}\Rightarrow\hept{\begin{cases}m=-1\\n=a+1\\b=a+1+7\end{cases}\Rightarrow}b=a+8\mid\left(1\right)}\)

  • Tương tự với phép chia \(x^3+ax+b\)cho \(x-3\)dư -5.

\(x^3+ax+b=\left(x-3\right)\left(x^2+px+q\right)-5\mid\forall x\in R\)

\(\Leftrightarrow x^3+ax+b=x^3+\left(p-3\right)x^2+\left(q-3p\right)x-\left(3q+5\right)\mid\forall x\in R\)

\(\Rightarrow\hept{\begin{cases}p-3=0\\q-3p=a\\-\left(3q+5\right)=b\end{cases}\Rightarrow\hept{\begin{cases}p=3\\q=a+9\\b=-\left(3\left(a+9\right)+5\right)\end{cases}\Rightarrow}b=-3a-32\mid\left(2\right)}\)

  • Từ (1) và (2) ta có:

\(\hept{\begin{cases}b=a+8\\b=-3a-32\end{cases}\Rightarrow a+8=-3a-32\Rightarrow\hept{\begin{cases}a=-10\\b=-2\end{cases}}}\)

  • Vậy với \(a=-10;b=-2\)thì đa thức đã cho trở thành  \(x^3-10x-2\)chia cho \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
  • Viết kết quả các phép chia này ta được:

\(\hept{\begin{cases}x^3-10x-2=\left(x+1\right)\left(x^2-x-9\right)+7\\x^3-10x-2=\left(x-3\right)\left(x^2+3x-1\right)-5\end{cases}\mid\forall x\in R}\)

Bài 3: 

a: \(3^x=243\)

nên \(3^x=3^5\)

hay x=5

b: \(x^5=32\)

nên \(x^5=2^5\)

hay x=2

c: \(x^6=729\)

\(\Leftrightarrow x^2=9\)

=>x=3 hoặc x=-3

3 tháng 6 2015

xét n chia cho 3 dư 1 suy ra n=3q+1 (q là thương )

suy ra n^2=(3q+1)^2=(3q)^2+1^2+2.3q.1=9q^2+1+6q

ta có 9q^2+6q chia hết cho 3,mà 1 chia 3 dư 1

từ 2 điều trên suy ra n^2 chia 3 dư 1

xét n chia 3 dư  suy ra n=3p+2 (p là thương)

suy ra n^2=(3p+2)^2=(3p)^2+2^2+2.3p.2=9p^2+4+12p

mà 9p^2+12p chia hết cho 3,mà 4 chia 3 dư 1

từ 2 điều trên suy ra n^2 chia 3 dư 1

vậy với mọi n thuộc N và n ko chia hết cho 3,n^2 luôn chia 3 dư 1

3 tháng 6 2015

có chỗ nào ko hieu bn cứ hỏi mình,tab cho mình nếu đung nha

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

12 tháng 10 2017

cái gì?