K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

Giải bài 14 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8Giải bài 14 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8

GV
24 tháng 4 2017

Lời giải của bạn Nhật Linh đúng rồi, tuy nhiên cần thêm điều kiện để A có nghĩa: \(x\ne\pm2\)

14 tháng 12 2018

a,ĐK:  \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)

b, \(A=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)

\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)

\(=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}=\frac{-3}{x-3}\)

c, Với x = 4 thỏa mãn ĐKXĐ thì

\(A=\frac{-3}{4-3}=-3\)

d, \(A\in Z\Rightarrow-3⋮\left(x-3\right)\)

\(\Rightarrow x-3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\Rightarrow x\in\left\{0;2;4;6\right\}\)

Mà \(x\ne0\Rightarrow x\in\left\{2;4;6\right\}\)

1,a, Rút gon biểu thức: \(B=\frac{x^3-y^3-z^3-3xyz}{\left(x+y\right)^2+\left(y-z\right)^2+\left(x+z\right)^2}\)b, Tìm số dư của phép chia A cho B. Biết:\(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+9\)\(B=\left(x^2+8x+1\right)\)c, Tìm x là số nguyên tố sao cho: \(\left(x^3-2x^2+7x-7\right)chiah\text{ế}t\left(x^2+3\right)\)2, Cho biểu thức: \(A=\left(\frac{1-x^3}{1-x}+x\right)\left(\frac{1+x^3}{1+x}-x\right)\)a, Rút gọn A ( Phải tìm...
Đọc tiếp

1,

a, Rút gon biểu thức: \(B=\frac{x^3-y^3-z^3-3xyz}{\left(x+y\right)^2+\left(y-z\right)^2+\left(x+z\right)^2}\)

b, Tìm số dư của phép chia A cho B. Biết:

\(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+9\)

\(B=\left(x^2+8x+1\right)\)

c, Tìm x là số nguyên tố sao cho: \(\left(x^3-2x^2+7x-7\right)chiah\text{ế}t\left(x^2+3\right)\)

2, Cho biểu thức: \(A=\left(\frac{1-x^3}{1-x}+x\right)\left(\frac{1+x^3}{1+x}-x\right)\)

a, Rút gọn A ( Phải tìm TXĐ)

b, Tìm x để A = 64

3,

a, Rút gọn biểu thức: \(M=75\left(4^{2016}+4^{2015}+........+4+1\right)+25\)

b, Tìm x biết: \(x^4-30x^2+31x-30=0\)

c, Tìm x, y là các số nguyên tố để \(x^2+45=y^2\)

4, Cho tam giác ABC vuông tại A (AC > AB) đường cao AH. Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC ại D cắt AC tại E

a, CMR: AE = AB    (gợi ý: Từ E kẻ EF vuông góc với AH ( F thuộc AH)

b, Gọi M là trung điểm của BE. Tính \(\widehat{AHM}\)

5, 

a, CMR: với mọi số nguyên a thì (a^3 - a) chia hết cho 6

b, Cho \(A=a_{1^3+}a_{2^3}+........+a_{n^3}\)

          \(B=\left(a_1+a_2+.......+a_n\right)^3\)

CMR: A chia hết cho 6 thì B chia hết cho 6

0
4 tháng 7 2017

B3;a,ĐKXĐ:\(x\ne\pm4\)

A=\(\left(\dfrac{4}{x-4}-\dfrac{4}{x+4}\right)\dfrac{x^2+8x+16}{32}=\left(\dfrac{4x+16}{x^2-16}-\dfrac{4x-16}{x^2-16}\right)\dfrac{x^2+2.4x+4^2}{32}=\left(\dfrac{4x+16-4x+16}{x^2-16}\right)\dfrac{\left(x+4\right)^2}{32}=\left(\dfrac{32}{x^2-16}\right)\dfrac{\left(x+4\right)^2}{32}=\dfrac{32\left(x+4\right)^2}{32.\left(x-4\right)\left(x+4\right)}=\dfrac{x+4}{x-4}\\ \\ \\ \\ \\ \\ b,Tacó\dfrac{x+4}{x-4}=\dfrac{1}{3}\Leftrightarrow3x+12=x-4\Leftrightarrow x=-8\left(TM\right)c,TAcó\dfrac{x+4}{x-4}=3\Leftrightarrow x+4=3x-12\Leftrightarrow x=8\left(TM\right)\)

Câu 1: 

a: \(A=\dfrac{x+1-x+1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x^2+1-2x}{2}\)

\(=\dfrac{2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}=\dfrac{x-1}{x+1}\)

b: Để A=x/6 thì \(\dfrac{x-1}{x+1}=\dfrac{x}{6}\)

\(\Leftrightarrow x^2+x-6x+6=0\)

=>x=3 hoặc x=2

3 tháng 1 2019

Đcm học ngu k biết xài caskov

7 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne\pm2\\x\ne-3\end{cases}}\)

b) \(P=1+\frac{x+3}{x^2+5x+6}\div\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)

\(\Leftrightarrow P=1+\frac{x+3}{\left(x+3\right)\left(x+2\right)}:\left(\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right)\)

\(\Leftrightarrow P=1+\frac{1}{x+2}:\left(\frac{2}{x-2}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{1}{x+2}\right)\)

\(\Leftrightarrow P=1+\frac{1}{x+2}:\frac{2x+4-x-x+2}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow P=1+\frac{1}{x+2}:\frac{6}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow P=1+\frac{\left(x-2\right)\left(x+2\right)}{6\left(x+2\right)}\)

\(\Leftrightarrow P=1+\frac{x-2}{6}\)

\(\Leftrightarrow P=\frac{x+4}{6}\)

c) Để P = 0

\(\Leftrightarrow\frac{x+4}{6}=0\)

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

Để P = 1

\(\Leftrightarrow\frac{x+4}{6}=1\)

\(\Leftrightarrow x+4=6\)

\(\Leftrightarrow x=2\)

d) Để P > 0

\(\Leftrightarrow\frac{x+4}{6}>0\)

\(\Leftrightarrow x+4>0\)(Vì 6>0)

\(\Leftrightarrow x>-4\)

a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5

=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5

=(x-2)/(2x^2-5x+5)(x-1)

 

\(A=\dfrac{x-2014}{\dfrac{x^2-4x+4-x^2-2x-1}{\left(x+1\right)\left(x-2\right)}:\dfrac{x^2-4x+4+x^2+2x+1}{\left(x+1\right)\left(x-2\right)}}\)

\(=\dfrac{x-2014}{\dfrac{-6x+3}{\left(x+1\right)\left(x-2\right)}\cdot\dfrac{\left(x+1\right)\left(x-2\right)}{2x^2-2x+5}}\)

\(=\left(x-2014\right)\cdot\dfrac{2x^2-2x+5}{-6x+3}\)

Để A>=0 thì \(\left(x-2014\right)\left(-6x+3\right)>=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-2014\right)< =0\)

=>1/2<x<=2014

2 tháng 5 2018

khocroikhocroikhocroihiha

2 tháng 5 2018

Câu 1 :

a) Rút gọn P :

\(P=\dfrac{x+1}{3x-x^2}:\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{12x^2}{x^2-9}\right)\)

\(P=\dfrac{x+1}{x\left(3-x\right)}:\left[\dfrac{\left(3+x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{12x^2}{\left(3-x\right)\left(3+x\right)}\right]\)

\(P=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{9+6x+x^2-9+6x-x^2-12x^2}{\left(3-x\right)\left(3+x\right)}\right)\)

\(P=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{12x-12x^2}{\left(3-x\right)\left(x+3\right)}\)

\(P=\dfrac{x+1}{x\left(3-x\right)}.\dfrac{\left(3-x\right)\left(x+3\right)}{12x\left(1-x\right)}\)

\(P=\dfrac{\left(x+1\right)\left(x+3\right)}{12x^2\left(1-x\right)}\)