K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2017

Câu 1

a)

\(A=\dfrac{1}{3+2\sqrt{2}}+\dfrac{1}{3-2\sqrt{2}}=\dfrac{\left(3-2\sqrt{2}\right)+\left(3+2\sqrt{2}\right)}{\left(3\right)^2-\left(2\sqrt{2}\right)^2}=\dfrac{6}{1}=6\)

Câu 1 Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m-2\right)x-3y=-5\\x+my=3\end{matrix}\right.\left(I\right)\) (với m là tham số) a) Giải hệ phương trình (I) có nghiệm duy nhất với mọi m.Tìm nghiệm duy nhất đó theo m. Câu 2 Cho Parabol (P): \(y=x^2\) và đường thẳng (d) có phương trình: \(y=2\left(m+1\right)x-3m+2\) a) Tìm tọa độ giao điểm của (P) và (d) với m=3 b) Chứng minh (P) và (d) luôn cắt nhau tại hai điểm...
Đọc tiếp

Câu 1
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m-2\right)x-3y=-5\\x+my=3\end{matrix}\right.\left(I\right)\) (với m là tham số)

a) Giải hệ phương trình (I) có nghiệm duy nhất với mọi m.Tìm nghiệm duy nhất đó theo m.

Câu 2
Cho Parabol (P): \(y=x^2\) và đường thẳng (d) có phương trình: \(y=2\left(m+1\right)x-3m+2\)
a) Tìm tọa độ giao điểm của (P) và (d) với m=3
b) Chứng minh (P) và (d) luôn cắt nhau tại hai điểm phân biệt A,B với mọi m
c) Gọi \(x_1;x_2\) là hoành độ giao điểm A,B. Tìm m để \(x_1^2+x_1^2=20\)
Câu 3 Cho đường tròn (O;R) dây DE < 2R. Trên tia đối DE lấy điểm A, qua A kẻ 2 tiếp tuyến AB và AC với đường tròn (O), (B,C là tiếp điểm). Gọi H là trung điểm DE, K là giao điểm của BC và DE.
a) Chứng minh tứ giác ABOC nội tiếp
b) Gọi (I) là đường tròn ngoại tiếp tứ giác ABOC. Chứng minh rằng H thuộc đường tròn (I) và HA là phân giác BHC.
c) Chứng minh rằng \(\dfrac{2}{AK}=\dfrac{1}{AD}+\dfrac{1}{AE}.\)
Câu 5
Cho ba số thực dương a,b,c thỏa mãn:
\(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)+2015\).
Tìm giá trị lớn nhất của biểu thức:
\(P=\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2a^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}.\)
Đề của Phú Thọ năm 2015-2016 ạ
Các cậu bơi vào đây thảo luận đi

6
16 tháng 3 2017

Bài Bất đẳng thức phân thức thứ 2 của tổng P ở phần mẫu sai đề

16 tháng 3 2017

Câu 1:

\(\left\{{}\begin{matrix}\left(m-2\right)x-3y=-5\\x+my=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(3-my\right)-3y=-5\\x=3-my\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3m-m^2y-6+2my-3y=-5\\x=3-my\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-2m+3\right)y=3m-1\left(1\right)\\x=3-my\left(2\right)\end{matrix}\right.\)

Ta có: \(m^2-2m+3=\left(m-1\right)^2+2>0\forall m\) nên \(pt(1)\) có nghiệm duy nhất \(\forall m\)

Suy ra hệ phương trình có nghiệm duy nhất \(\forall m\)

Từ \((1)\) ta có \(y=\dfrac{3m-1}{m^2-2m+3}\) thay vào \((2)\) ta có \(x=\dfrac{9-5m}{m^2-2m+3}\)

Câu 2:

Thay \(m=3\) ta có \((d)\):\(y=8x-7\)

Phương trình hoành độ giao điểm \((P)\)\((d)\) khi \(m=3\)

\(x^2=8x-7\Leftrightarrow x^2-8x+7=0\)\(\Leftrightarrow\left[{}\begin{matrix}x_1=1\\x_2=7\end{matrix}\right.\)

Tọa độ giao điểm \((P)\)\((d)\)\((1;1);(7;49)\)

b)Xét phương trình hoành độ giao điểm \((P)\)\((d)\):

\(x^2-2(m+1)x+3m-2=0(1)\)

\(\Delta=m^2+2m+1-3m+2=m^2-m+3=\left(m-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\forall m\)

Nên pt \((1)\) có hai nghiệm phân biệt \(\forall m\)

Suy ra \((P)\)\((d)\) luôn cắt nhau tại hai điểm phân biệt \(A,B\) với mọi \(m\)

c)Ta có \(x_1;x_2\) là nghiệm của pt \((1)\) do \(\Delta>0\forall m\) theo định lý Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=3m-2\end{matrix}\right.\)

\(x^2_1+x_2^2=20\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\)

Thay vào hệ thức Vi-ét ta có:

\(\left(2m+2\right)^2-2\left(3m-2\right)=20\Leftrightarrow2m^2+m-6=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-\dfrac{3}{2}\end{matrix}\right.\)

BÀI 1Cho hàm số y=ax^2 có đồ thị Pa) tìm a biết rằng P qua điểm A (1;-1) .Vẻ P với a vừa tìm đượcb) trên P lấy điểm B có hoành độ -2, tìm phương trình của đường thẳng AB và tìm tọa độ giao điểm D của đường thẳng AB và trục tungc)viết phương trình đường thẳng (d) qua O và song song với AB, xác định toạ độ giao điểm C của (d) và P (C khác 0)d( chứng tỏ OCDA là hình vuông BÀI 2:Cho hàm...
Đọc tiếp

BÀI 1
Cho hàm số y=ax^2 có đồ thị P
a) tìm a biết rằng P qua điểm A (1;-1) .Vẻ P với a vừa tìm được
b) trên P lấy điểm B có hoành độ -2, tìm phương trình của đường thẳng AB và tìm tọa độ giao điểm D của đường thẳng AB và trục tung
c)viết phương trình đường thẳng (d) qua O và song song với AB, xác định toạ độ giao điểm C của (d) và P (C khác 0)
d( chứng tỏ OCDA là hình vuông

 

BÀI 2:
Cho hàm số y=ax^2
a) tìm a biét đồ của thị hàm số đã cho đi qua điểm A(-căn 3; 3). vẽ đồ thị P của hàm số với a vừa tìm được
b)trên P lấy 2 điểm B, C có hoành độ lần lượt là 1, 2 .Hảy viết phương trình đường thẳng BC
c) cho D( căn 3;3). Chứng tỏ điểm D thuộc P và tam giác OAD là tam giác đều.Tính diện tích của tam giác OAD

 

BÀI 5:Cho hàm số y=2x+b hãy xác định hệ số b trong các trường hợp sau :
a) đồ thị hàm số đã cho cắt trục tung tại điểm có tung độ bằng -3
b) đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 1.5

0
KIỂM TRA HỌC KÌ I 2017 - 2018 Bài 1 rút gọn biểu thức : a. \(2\sqrt{12}-\dfrac{2}{3}\sqrt{27}\) b.\(\sqrt{\left(\sqrt{5}-1^{ }\right)^2}+\dfrac{4}{3+\sqrt{5}}\) ] Bài 2 câu 1 cho biểu thức : \(A=\dfrac{\sqrt{x-1}+1}{2\sqrt[]{x-1}+3}\) a. diều kiện xác định của A b. tìm x , biết A=\(\dfrac{2}{5}\) câu 2 giải hệ phương trình \(\left\{{}\begin{matrix}2x+y=1\\2-2y=8\end{matrix}\right.\) Bài 3 a. vẽ đồ thị hàm số y=-x+4(d1) b. viết...
Đọc tiếp

KIỂM TRA HỌC KÌ I 2017 - 2018
Bài 1 rút gọn biểu thức :
a. \(2\sqrt{12}-\dfrac{2}{3}\sqrt{27}\) b.\(\sqrt{\left(\sqrt{5}-1^{ }\right)^2}+\dfrac{4}{3+\sqrt{5}}\) ]
Bài 2 câu 1 cho biểu thức : \(A=\dfrac{\sqrt{x-1}+1}{2\sqrt[]{x-1}+3}\)
a. diều kiện xác định của A
b. tìm x , biết A=\(\dfrac{2}{5}\)

câu 2 giải hệ phương trình \(\left\{{}\begin{matrix}2x+y=1\\2-2y=8\end{matrix}\right.\)
Bài 3 a. vẽ đồ thị hàm số y=-x+4(d1)
b. viết phương trình dường thẳng (d2) biết d2 qua M(2;-1)cắt trục tung tại điểm có tung độ bằng -5
c. tìm m để đường thẳng d3 : y=-\(\dfrac{1}{3}\)x +2(m-1) qua giao điểm của d1 và d2 .
Bài 4 cho dường trn2 tâm O, đường kính AB=2R. Trên đường tròn lấy diểm C sao cho AC=R . vẽ tiếp tuyến Ax với đường tròn .Gọi K là giao điểm của đường thẳng BC với Ax .
a. CM : tam giác ABC vuông và tính số đo góc \(\widehat{ABC}\)
b. từ A kẻ AE vuông góc với KO tại E . CM KC.BC=OE.OK
c. đường thẳng AE cắt đường tròn tâm O tại điểm thứ hai M . CM KM là tiếp tuyến của O
d. đường thẳng vuông góc với AB tại O cắt BK tại I và cắt đường thẳng BM tại N. CM:IO=IN

Hướng dẫn giải:

0
1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.a) Chứng minh AEHF nội tiếpb) Chứng minh EC là tia phân giác của góc DEFc) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MDd) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O) e) Đường thẳng qua D  song...
Đọc tiếp

1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.

a) Chứng minh AEHF nội tiếp

b) Chứng minh EC là tia phân giác của góc DEF

c) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD

d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)

 e) Đường thẳng qua D  song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.

2. Cho điểm A nằm ngoài đường tròn (O;R), từ A kẻ hai tiếp tuyến AB, AC và cát tuyến ADE (B, C là hai tiếp điểm, O nằm trong góc BAE). BC cắt OA tại I 
a) Chứng minh: tứ giác ABOC nội tiếp và OA vuông góc với BC 
b) Chứng minh OI.IA=(BC^2)/4 và AB.AC = AD.AE 
c) Vẽ đường kính BK của (O), Tia KD cắt OA tại F. Chứng minh FB vuông góc với EB 
d) Gọi H là trung điểm của DE, từ B kẻ dây BN song song với DE. Chứng minh 3 điểm N, H, C thẳng hàng. 

3. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE. 
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC 
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE 
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ. 
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng 

Giúp em giai  cau 1 d, cau 2 c, câu 3 c , cảm ơn nhiều

2
14 tháng 4 2016
2c. ta co goc CAO=OAB=OBC=KDC(goc noi tiep chan cung KC) =>tu giac CDFA noi tiep =>goc ADF=ACF lai co goc ADF=KDE=EBK (goc noi tiep chan cung EK) goc ACF=ABF ( B,C doi xung qua OA) =>goc EBK=ABF ma ABF + KBF =90 => EBK+KBF =90 => EBF=90 =>EB vuong goc voi BF
15 tháng 4 2016

cam on ban nha

con cau 3c giup minh duoc ko

Câu 1: a) Cho hàm số y = ax + b, xác định a,b biết đồ thị hàm số đi qua điểm A( -1;2) và song song với đường thẳng y = 2x+3, vẽ đồ thị hàm số với giá trị a, b vừa tìm được b) Cho hàm số : y = mx – m + 2, có đồ thị là đường thẳng (d) Tìm tọa độ điểm cố định mà đường thẳng (d) luôn đi qua với mọi giá trị của m c) Tìm m để đường thẳng d cắt đường thẳng y = 2x -3 tại điểm...
Đọc tiếp

Câu 1: a) Cho hàm số y = ax + b, xác định a,b biết đồ thị hàm số đi qua điểm A( -1;2) và song song với đường thẳng y = 2x+3, vẽ đồ thị hàm số với giá trị a, b vừa tìm được b) Cho hàm số : y = mx – m + 2, có đồ thị là đường thẳng (d) Tìm tọa độ điểm cố định mà đường thẳng (d) luôn đi qua với mọi giá trị của m c) Tìm m để đường thẳng d cắt đường thẳng y = 2x -3 tại điểm nằm trên trục hoành.            Câu 2: Cho đường tròn tâm O đường kính AB. Trên đường tròn lấy điểm C sao cho AC < BC (C khác A). Tiếp tuyến Bx của đường tròn (O) cắt đường trung trực của BC tại D. Gọi F là giao điểm của DO và BC. a) Chứng minh CD là tiếp tuyến của đường tròn (O) b) Gọi E là giao điểm của AD với đường tròn (O) (với E khác A). Chứng minh DE.DA = DC^2 = DF.DO c) Gọi H là hình chiếu của C trên AB, I là giao điểm của AD và CH. Chứng minh I là trung điểm của CH.

0
Làm giúp mình 2 bài này với, mai mình phải nộp rồi!!!Bài 1: Từ điểm A nằm ngoài đường tròn (O;R), vẽ 2 tiếp tuyến AB, AC với đường tròn.a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc BC tại Hb) Vẽ đường kính CD của đường tròn (O;R), AD cắt (O) tại M. Chứng minh: góc BHM = góc MACc) Tia BM cắt AO tại N. Chứng minh NA=NHd) Vẽ ME là đường kính đường tròn (O), gọi I là trung điểm DM....
Đọc tiếp

Làm giúp mình 2 bài này với, mai mình phải nộp rồi!!!

Bài 1: 
Từ điểm A nằm ngoài đường tròn (O;R), vẽ 2 tiếp tuyến AB, AC với đường tròn.
a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc BC tại H
b) Vẽ đường kính CD của đường tròn (O;R), AD cắt (O) tại M. Chứng minh: góc BHM = góc MAC
c) Tia BM cắt AO tại N. Chứng minh NA=NH
d) Vẽ ME là đường kính đường tròn (O), gọi I là trung điểm DM. Chứng minh: 3 điểm B, I, E thẳng hàng và BI song song MH.

Bài 2: 
Cho tam giác ABC vuông tại A. Vẽ đường tròn tâm O đường kính AC cắt BC tại H. Gọi I là trung điểm của HC. Tia OI cắt (O) tại F
a) Chứng minh AH là đường cao của tam giác ABC và AB^2= BH. BC
b) Chứng minh: Tứ giác ABIO nội tiếp
c) Chứng minh: AF là tia phân giác của góc HAC
d) AF cắt BC tại D. Chứng minh: BA=BD

0
Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

20 tháng 5 2015

hết hạn khỏi giải nhé mỏ vịt đi bơi đi

4 tháng 2 2020

Bài 3:

Đặt \(a=m^2-4\)

\(a)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)nghịch biến

\(\Leftrightarrow a< 0\)

\(\Leftrightarrow m^2-4< 0\)

\(\Leftrightarrow m^2< 4\)

\(\Leftrightarrow-\sqrt{4}< m< \sqrt{4}\)

\(\Leftrightarrow-2< m< 2\)

Vậy với \(-2< m< 2\)thì hàm số nghịch biến

\(b)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)đồng biến \(\forall x>0\)

\(\Leftrightarrow a>0\)

\(\Leftrightarrow m^2-4>0\)

\(\Leftrightarrow m^2>4\)

\(\Leftrightarrow\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)

Vậy với \(\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)thì hàm số đồng biến \(\forall x>0\)