K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2: 

\(x^2-2\left(m-3\right)x-1=0\)

a=1; b=-2m+6; c=-1

Vì ac<0 nên phương trình luôn có hai nghiệm phân biệt

Ta có: \(A=x_1^2+x_2^2-x_1x_2\)

\(=\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2\)

\(=\left(x_1+x_2\right)^2-3x_1x_2\)

\(=\left(2m-6\right)^2-3\cdot\left(-1\right)\)

\(=4m^2-24m+36+3\)

\(=\left(2m-6\right)^2+3\ge3\)

Dấu '=' xảy ra khi m=3

AH
Akai Haruma
Giáo viên
8 tháng 5 2018

Bài 1)

ĐK: \(x\geq 0; x\neq -4\)

Ta có:

\(A=\frac{1}{\sqrt{x}+2}+\frac{1}{2+\sqrt{x}}-\frac{2\sqrt{x}}{x+4}\)

\(=\frac{2}{\sqrt{x}+2}-\frac{2\sqrt{x}}{x+4}=2\left(\frac{1}{\sqrt{x}+2}-\frac{\sqrt{x}}{x+4}\right)\)

\(=2.\frac{x+4-x-2\sqrt{x}}{(\sqrt{x}+2)(x+4)}=2.\frac{4-2\sqrt{x}}{(\sqrt{x}+2)(x+4)}=\frac{4(2-\sqrt{x})}{(\sqrt{x}+2)(x+4)}\)

\(B=(\sqrt{2}+\sqrt{3}).\sqrt{2}-\sqrt{6}+\frac{\sqrt{333}}{\sqrt{111}}\)

\(=2+\sqrt{6}-\sqrt{6}+\frac{\sqrt{3}.\sqrt{111}}{\sqrt{111}}=2+\sqrt{3}\)

Để \(A=B\Leftrightarrow \frac{4(2-\sqrt{x})}{(\sqrt{x}+2)(x+4)}=2+\sqrt{3}\)

PT rất xấu. Mình nghĩ bạn đã chép sai biểu thức A.

AH
Akai Haruma
Giáo viên
8 tháng 5 2018

Bài 2 : Tọa độ điểm B ?

Bài 3:

Để pt có hai nghiệm thì \(\Delta'=(m-3)^2-(m^2-1)>0\)

\(\Leftrightarrow 10-6m>0\Leftrightarrow m< \frac{5}{3}\)

Áp dụng định lý Viete: \(\left\{\begin{matrix} x_1+x_2=2(m-3)\\ x_1x_2=m^2-1\end{matrix}\right.\)

Khi đó:

\(4=2x_1+x_2=x_1+(x_1+x_2)=x_1+2(m-3)\)

\(\Rightarrow x_1=10-2m\)

\(\Rightarrow x_2=2(m-3)-(10-2m)=4m-16\)

Suy ra: \(\Rightarrow x_1x_2=(10-2m)(4m-16)\)

\(\Leftrightarrow m^2-1=8(5-m)(m-4)\)

\(\Leftrightarrow m^2-1=8(-m^2+9m-20)\)

\(\Leftrightarrow 9m^2-72m+159=0\)

\(\Leftrightarrow (3m-12)^2+15=0\) (vô lý)

Vậy không tồn tại $m$ thỏa mãn điều kiện trên.

NV
8 tháng 12 2018

ĐKXĐ: \(x\ge0;x\ne9\)

\(P=\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\right)\)

\(P=\left(\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right)\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)

\(P=\left(\dfrac{-3\sqrt{x}-3}{x-3}\right)\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)

\(P=\dfrac{-3}{\sqrt{x}+3}\)

b/ Do \(-3< 0\Rightarrow P_{min}\) khi \(\sqrt{x}+3\) nhỏ nhất

\(\sqrt{x}+3\ge3\Rightarrow P_{min}=\dfrac{-3}{3}=-1\) khi \(\sqrt{x}+3=3\Leftrightarrow x=0\)

Vậy với \(x=0\) thì P đạt GTNN

8 tháng 12 2018

a) \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}=\left[\dfrac{2x-6\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}=\dfrac{-3}{\sqrt{x}+3}\)

b) Ta có \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+3\ge3\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}\ge-1\)

Dấu bằng xảy ra khi x=0

Vậy x=0 thì P đạt GTNN là -1

ĐỀ KIỂM TRA 1 TIẾT TỔNG HỢP​1. Tính \(\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}\)  (căn 7 - căn căn 2 ) (1đ)2. Rút gọn: \(\frac{2\sqrt{2}+2\sqrt{3}+4}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{12}+5}\)(1đ)3. Rút gọn \(\sqrt{\frac{27\left(m^2-6m+9\right)}{48}}\)với m < 3 (1đ)4. Tìm GTNN của biểu thức và x tương ứng: \(M=\sqrt{16x^2-8x+2}\)(0,5đ)5. Cho biểu thức:...
Đọc tiếp

ĐỀ KIỂM TRA 1 TIẾT TỔNG HỢP

1. Tính \(\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}\)  (căn 7 - căn căn 2 ) (1đ)

2. Rút gọn: \(\frac{2\sqrt{2}+2\sqrt{3}+4}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{12}+5}\)(1đ)

3. Rút gọn \(\sqrt{\frac{27\left(m^2-6m+9\right)}{48}}\)với m < 3 (1đ)
4. Tìm GTNN của biểu thức và x tương ứng: \(M=\sqrt{16x^2-8x+2}\)(0,5đ)

5. Cho biểu thức: (2,5đ)
\(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)với x >0, x khác 1 
Hãy tìm x để A có nghĩa rồi:
a/ Rút gọn A
b/ Tìm x biết A =-1 
6. Giai phương trình \(\sqrt{16x-32}-\sqrt{4x-8}+\sqrt{9x-18}=1\)(0,5đ)
7. Giai phương trình \(\sqrt{x^2+2x+6}=x+2\)(0,5đ)
8. Thực hiện phép tính: \(B=\sqrt{5}\left(1-\sqrt{5}\right)+\sqrt{\sqrt{5}+1}.\sqrt{\sqrt{5}-1}\)(0,5đ)
9. Rút gọn biểu thức E = \(\sqrt{\frac{b}{a}}+ab\sqrt{\frac{1}{ab}}-\frac{b}{a}.\sqrt{\frac{a}{b}}\)(0,5đ)
10. Giai phương trình sau: \(\sqrt{4x-12}-\sqrt{25x-75}-\sqrt{x-3}=4-\sqrt{16x-48}\)(0,5đ)
11. Cho biểu thức: \(F=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}-1}{\sqrt{a}+2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)với a >0, a khác 1
a/ Rút gọn F
b/ Tìm giá trị của a để trị F = -F
 

0
24 tháng 10 2018

giải hộ

28 tháng 10 2022

Bài 2: 

a: =>25x=35^2=1225

=>x=49

b: \(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

=>x+5=4

=>x=-1

8 tháng 9 2018

Mọi ngươi giúp em với ạ chứ em làm câu a Bài 1 và 2 ra kết quả dài quá :(

Bài 1: 

a: \(P=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)

\(=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)

b: Để P<1 thì P-1<0

\(\Leftrightarrow\dfrac{\sqrt{a}-4-\sqrt{a}+2}{\sqrt{a}-2}< 0\)

=>căn a-2>0

=>a>4

a: \(A=\left(\dfrac{\sqrt{x}}{x+2}+\dfrac{6\sqrt{x}}{x-4}\right)\cdot\dfrac{\sqrt{x}+2}{1}\)

\(=\dfrac{x-2\sqrt{x}+6\sqrt{x}}{x-4}\cdot\dfrac{\sqrt{x}+2}{1}=\dfrac{x+4\sqrt{x}}{\sqrt{x}-2}\)

b: \(M=A:B=\dfrac{x+4\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{x+4\sqrt{x}}{\sqrt{x}+1}\)

b: \(M-1=\dfrac{x+4\sqrt{x}-\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{x+3\sqrt{x}-1}{\sqrt{x}+1}>0\)

=>M>1

8 tháng 8 2018

1/ Rút gọn: \(a)3\sqrt{2a}-\sqrt{18a^3}+4\sqrt{\dfrac{a}{2}}-\dfrac{1}{4}\sqrt{128a}\left(a\ge0\right)=3\sqrt{2a}-3a\sqrt{2a}+2\sqrt{2a}-2\sqrt{2a}=3\sqrt{2a}\left(1-a\right)\)b)\(\dfrac{\sqrt{2}-1}{\sqrt{2}+2}-\dfrac{2}{2+\sqrt{2}}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-1-2}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3+2+1+2\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3}{1+\sqrt{2}}\)c)\(\dfrac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3+\sqrt{5}}\right)\sqrt{2}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{6+2\sqrt{5}}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{6-2\sqrt{5}}}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{\left(\sqrt{5}+1\right)^2}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{\left(\sqrt{5}-1\right)^2}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{2+\sqrt{5}+1}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{2-\sqrt{5}+1}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{3+\sqrt{5}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{3-\sqrt{5}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\sqrt{2}\left(2-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{\sqrt{2}\left(6-2\sqrt{5}+3\sqrt{5}-5+6+2\sqrt{5}-3\sqrt{5}-5\right)}{9-5}=\dfrac{2\sqrt{2}}{4}=\dfrac{1}{\sqrt{2}}\)

8 tháng 8 2018

Làm nốt nè :3

\(2.a.P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x}=\dfrac{x-1}{x}\left(x>0;x\ne1\right)\)\(b.P>\dfrac{1}{2}\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{x-2}{2x}>0\)

\(\Leftrightarrow x-2>0\left(do:x>0\right)\)

\(\Leftrightarrow x>2\)

\(3.a.A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a-1}=\dfrac{\sqrt{a}-1}{\sqrt{a}-1}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\sqrt{a}-1\left(a>0;a\ne1\right)\)

\(b.Để:A< 0\Leftrightarrow\sqrt{a}-1< 0\Leftrightarrow a< 1\)

Kết hợp với DKXĐ : \(0< a< 1\)