Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 2x-1-x2= -(x2-2x+1)=-(x-1)2
b. 8x3+y6=(2x)3+(y2)3
=(2x+y2)(4x2-2xy2+y4)
c. x2-16+4xy+4y2=(x2+4xy+4y2)-16
=(x+2y)2-16=(x+2y+4)(x+2y-4)
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
a) \(\left(x^2-2x+1\right)-\left(y^2+2y+1\right)\)
\(=\left(x-1\right)^2-\left(y+1\right)^2\)
\(=\left(x-y-2\right)\left(x+y\right)\)
Câu 1: (2x+y)(y-2x)+4x2=y2-4x2+4x2=y2
Với y=10 giá trị biểu thức trên là 102=100
Câu 2:
a. xy-11x=x.(y-11)
b. x2+4y2+4xy-16=(x2+4xy+4y2)-16
=(x+2y)2-16=(x+2y+4)(x+2y-4)
a) xy – 3x + 2y – 6
= (xy - 3x) + (2y - 6)
= x(y - 3) + 2(y - 3)
= (y - 3)(x + 2)
b) x2y + 4xy + 4y – y3
= y(x2 + 4x + 4 - y2)
= y[(x2 + 4x + 4) - y2]
= y[(x + 2)2 - y2]
= y(x + 2 + y)(x + 2 - y)
c) x2 + y2 + xz + yz + 2xy
= (x2 + 2xy + y2) + (xz + yz)
= (x + y)2 + z(x + y)
= (x + y)(x + y + z)
d) x3 + 3x2 – 3x – 1
= (x3 - 1) + (3x2 - 3x)
= (x - 1)(x2 + x + z) + 3x(x - 1)
= (x - 1)(x2 + 4x + 1)
a )
\(xy-3x+2y-6\)
\(=\left(xy+2y\right)-3x-6\)
\(=y\left(x+2\right)-3\left(x+2\right)\)
\(=\left(y-3\right)\left(x+2\right)\)
b )
\(x^2y+4xy+4y-y^3\)
\(=y\left(x^2+4x+4-y^2\right)\)
\(=y\left[\left(x+2\right)^2-y^2\right]\)
\(=y\left(x+2-y\right)\left(x+2+y\right)\)
c )
\(x^2+y^2+xz+yz+2xy\)
\(=\left(x+y\right)^2+z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y+z\right)\)
a) xy + y2 - x - y
= ( xy – x ) + ( y^2 – y )
= x (y – 1) + y (y – 1)
= (y – 1) (x + y)
b) 25 – x^2 + 4xy - 4y^2
= 5^2 – (x^2 – 4xy + 4y^2)
= 5^2 – (x – 2y)^2
= (5 – x + 2y)(5 + x – 2y)
Tik mình với
a,81-(x^2-4xy+4y^2)=81-(x-2y)^2=(9-(x-2y))(9+(x-2y))=(9-x+2y)(9+x-2y)
b,x^3+y^3+z^3-3xyz=(x^3+3(x^2)y+3x(y^2)+y^3)+z^3-3xyz-3xy(x+y)
=((x+y)^3+3((x+y)^2)z+3(x+y)z^2+z^3)-(3xyz-3xy(x+y))-3(x+y)z(x+y+z)
=(x+y+z)^3-3(x+y)z(x+y+z)-3xy(x+y+z)=(x+y+z)((x+y+z)^2-3(x+y)z-3xy)
=(x+y+z)(x^2+y^2+z^2+2xy+2yz+2xz-3xy-3yz-3xz)=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
1)\(=x^2\left(x-y\right)-y\left(x-y\right)\\ =\left(x-y\right)\left(x^2-y\right)\)
2)\(=\left(x^2+x\right)-\left(2xy+2y\right)\\ =x\left(x+1\right)-2y\left(x+1\right)\\ =\left(x+1\right)\left(x-2y\right)\)
3)\(=\left(x^2+2.x.2y+4y^2\right)-y^2\\ =\left(x+2y\right)^2-y^2\\ =\left(x+2y+y\right)\left(x+2y-y\right)\)
1) x3 - x2y - xy + y2
= (x3 - x2y) - (xy - y2)
= x2.(x - y) - y.(x - y)
= (x - y).(x2 - y)
2) x2 - 2xy + x - 2y
= (x2 + x) - (2xy + 2y)
= x.(x + 1) - 2y.(x + 1)
= (x + 1).(x - 2y)
3) x2 + 4xy + 3y2
= x2 + 3xy + xy + 3y2
= (x2 + 3xy) + (xy + 3y2)
= x.(x + 3y) + y.(x + 3y)
= (x + 3y).(x + y)
1 ) \(x^3-x^2y-xy+y^2\)
\(=\left(x^3-x^2y\right)-\left(xy-y^2\right)\)
\(=x^2.\left(x-y\right)-y.\left(x-y\right)\)
\(=\left(x-y\right).\left(x^2-y\right)\)
2 ) \(x^2-2xy+x-2y\)
\(=\left(x^2+x\right)-\left(2xy+2y\right)\)
\(=x.\left(x+1\right)-2y.\left(x+1\right)\)
\(=\left(x+1\right).\left(x-2y\right)\)
3 ) \(x^2+4xy+3y^2\)
\(=x^2+3xy+xy+3y^2\)
\(=\left(x^2+3xy\right)+\left(xy+3y^2\right)\)
\(=x.\left(x+3y\right)+y.\left(x+3y\right)\)
\(=\left(x+3y\right).\left(x+y\right)\)
3 - 6x + 3x^2
= 3 ( 1 - 2x + x^2 )
= 3( 1 - x )^2
b, x^2 - 4xy + 4y^2
= ( x)^2 + 2.x.2y + (2y)^2
= ( x+ 2y)^2
Câu 1:
$x^2+4y^2+4xy-16=[x^2+(2y)^2+2.x.2y]-16$
$=(x+2y)^2-4^2=(x+2y-4)(x+2y+4)$
Câu 2:
$x^3+x^2+y^3+xy=(x^3+y^3)+(x^2+xy)$
$=(x+y)(x^2-xy+y^2)+x(x+y)=(x+y)(x^2-xy+y^2+x)$
Câu 1:
\(x^2+4y^2+4xy-16\)
\(=\left(x+2y\right)^2-16\)
\(=\left(x+2y+4\right)\left(x+2y-4\right)\)
Câu 2:
\(x^3+x^2+y^3+xy\)
\(=\left(x^3+y^3\right)\left(x^2+xy\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+x\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+x\right)\)