K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2020

Câu 1: 

\(x\left(x-2\right)\left(x+2\right)-\left(x+2\right)\left(x^2-2x+4\right)=4\)

\(\Leftrightarrow x\left(x^2-4\right)-\left(x^3+8\right)=4\)

\(\Leftrightarrow x^3-4x-x^3-8=4\)

\(\Leftrightarrow-4x-8=4\)

\(\Leftrightarrow-4x=12\)

\(\Leftrightarrow x=-3\)

Vậy \(x=-3\)

1 tháng 11 2020

câu 1

x(x-2)(x+2)-(x+2)(x2-2x+4)=4

(x2-2x)(x+2)-(x+2)(x2-2x+4)=4

(x+2)(x2-2x-x2+2x-4)=4

(x+2)(-4)=4

x+2=-1

x=-3

Chúc bạn hok tốt!!!

1 tháng 11 2020

câu 2

a)A=4x2-12x+46/5

A=(2x)2-2*2*x*3+9+1/5

A=(2x-3)2+1/5

Vì (2x-3)2 ≥0 với mọi x

=>(2x-3)2+1/5≥1/5 với mọi x

hay A≥1/5 với mọi x

Dấu "=" xảy ra <=> 2x-3=0

<=> 2x=3

<=> x=3/2

Vậy GTNN của A=1/5 <=> x=3/2

b)B=x2-2xy+6y2-12x+2y+45

B=x2-(2xy+12x)+5y2+(y2+2*6*y+36)-10y+9

B=x2-2x(y+6)+(y+6)2+5y2-10y+9

B=(x-y-6)2+5(y2-2y+1)+4

B=(x-y-6)2+5(y-1)2+4

Vì (x-y-6)2+5(y-1)2≥0 với mọi x y

=>(x-y-6)2+5(y-1)2+4≥-4 với mọi x y

=>B≥-4 với mọi x y

Dấu "=" xảy ra <=> y-1=0 và x-y-6=0

<=>y=1 Thay y=1 vào ta được

x-1-6=0

x-7=0

x=7

Vậy GTNN của B=-4 <=> x=7 và y=1

22 tháng 7 2018

Bài 1 :

a ) \(z\left(y-x\right)+y\left(x-z\right)+x\left(y+z\right)-2yz+100\)

\(=yz-xz+xy-yz+xy+xz-2yz+100\)

\(=2xy-2yz+100\) ( Đề sai )

b ) \(2y\left(y^2+y+1\right)-2y^2\left(y+1\right)-2\left(y+10\right)\)

\(=2y^3+2y^2+2y-2y^3-2y^2-2y-20\)

\(=-20\)

Vậy biểu thức không phụ thuộc vào biến .

Bài 2 :

a ) \(3x\left(12x-4\right)-9x\left(4x-3\right)=30\)

\(\Leftrightarrow36x^2-12x-36x^2+27x=30\)

\(\Leftrightarrow15x=30\)

\(\Leftrightarrow x=2\)

b ) \(2x\left(x-5\right)-x\left(2x+3\right)=x^2-x\left(x-1\right)\)

\(\Leftrightarrow2x^2-10x-2x^2-3x-x^2+x^2-x=0\)

\(\Leftrightarrow-14x=0\)

\(\Leftrightarrow x=0\)

22 tháng 7 2018

Bài 1 câu a chép sai đề.....

15 tháng 8 2021

Giúp mình với ạ,cảm ơn mọi người

b: Ta có: \(B=x^2+4x+9y^2-6y-1\)

\(=x^2+4x+4+9y^2-6y+1-6\)

\(=\left(x+2\right)^2+\left(3y-1\right)^2-6\ge-6\forall x,y\)

Dấu '=' xảy ra khi x=-2 và \(y=\dfrac{1}{3}\)

\(A=x^2+12x+36=x^2+12x+36+3=\left(x+6\right)^2+3\ge3\)

Dấu '=' xảy ra khi x=-6

\(B=9x^2-12x+4-4=\left(3x-2\right)^2-4\ge-4\)

Dấu '=' xảy ra khi x=2/3

\(C=-x^2+4x+1\)

\(=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2

19 tháng 9 2020

Câu 1.

B = ( 3x + 5 )( 2x + 1 ) + ( 4x - 1 )( 3x + 2 )

= 6x2 + 3x + 10x + 5 + 12x2 + 8x - 3x - 2

= 18x2 + 18x + 3

| x | = 2 => x = ±2

Với x = 2 => B = 18.22 + 18.2 + 3 = 111

Với x = -2 => B = 18.(-2)2 + 18.(-2) + 3 = 39

C = ( 2x + y )( 2x + y ) + ( x - y )( y - z )

= 4x2 + 4xy + y2 + xy - xz - y2 + yz

= 4x2 + 5xy - xz + yz

Với x = 1 ; y = 1 ; z = 1 => C = 4.12 + 5.1.1 - 1.1 + 1.1 = 9

Câu 2.

Gọi ba số tự nhiên cần tìm là a ; a + 1 ; a + 2 ( a ∈ N )

Theo đề bài ta có :

( a + 1 )( a + 2 ) - a( a + 1 ) = 50

<=> a2 + 3a + 2 - a2 - a = 50

<=> 2a + 2 = 50

<=> 2a = 48

<=> a = 24 ( tmđk )

=> a + 1 = 25 ; a + 2 = 26

Vậy ba số cần tìm là 24 ; 25 ; 26 

Câu 3.

Sửa đề một chút : ( x + y )( x3 - x2y + xy2 - y ) = x4 - y4

( x + y )( x3 - x2y + xy2 - y3 )

= x4 - x3y + x2y2 - xy3 + x3y - x2y2 + xy3 - y4

= x4 - y4 ( đpcm )

Câu 1 :

\(a,B=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\)

\(=6x^2-3x+10x-5+12x^2+8x-3x-2\)

\(=\left(6x^2+12x^2\right)+\left(-3x+10x+8x-3x\right)+\left(-5-2\right)\)

\(=18x^2-4x-7\)

Với \(|x|=2\Rightarrow x=\pm2\)

Với x = 2 => \(B=18.2^2-4.2-7=72-8-7=57\)

Với x = -2 => \(B=18.\left(-2\right)^2-4.\left(-2\right)-7=73\)

Câu b tương tự

Câu 2 :

Gọi 3 số tự nhiên cần tìm là a , a+1 , a+2 .

Vì tích của hai số đầu hỏ hơn tích của hai số sau là 50 nên ta có :

\(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=50\)

\(\Leftrightarrow a^2+2a+a+2-a^2-a=50\)

\(\Leftrightarrow\left(a^2-a^2\right)+\left(a-a\right)+2a=50-2\)

\(\Leftrightarrow2a=48\)

\(\Leftrightarrow a=24\)

Vậy ba số tự nhiên cần tìm lần lượt là 24,25,26 .

Câu 3 :

Ta có :

\(\left(x+y\right)\left(x^3-x^2y+xy^2-y^3\right)\)

\(=x^4-x^3y+x^2y^2-xy^3+yx^3-x^2y^2+xy^3-y^4\)

\(=x^4+\left(-x^3y+yx^3\right)+\left(x^2y^2-x^2y^2\right)+\left(-xy^3+xy^3\right)-y^4\)

\(=x^4-y^4\)

=> đpcm 

18 tháng 6 2016

a) = (x + 3)2 - y2 = (x + 3 - y)(x + 3 + y)

b) = x2(x - 3) -4(x - 3) = (x - 3)(x2 - 4) = (x - 3)(x - 2)(x + 2)

c) = 3x(x - y) - 5(x - y) = (x - y)(3x - y)

d) Nhầm đề. tui sửa lại x3 + y3 + 2x2 - 2xy + 2y2

= x3 + y3 + 2(x2 - xy + y2) = (x + y)(x2 - xy + y2) + 2(x2 - xy + y2) = (x2 - xy + y2)(x + y + 2)

e) = x4 - x3 - x3 + x2 - x2 + x + x - 1 = x3(x - 1) - x2(x - 1) - x(x - 1) + x - 1 = (x - 1)(x3 - x2 - x + 1) = (x - 1)(x - 1)(x2 - 1) = (x - 1)3(x + 1)

f) = x3 - 3x2 - x2 + 3x + 9x - 27 = x2(x - 3) - x(x - 3) + 9(x - 3) = (x-3)(x2 - x + 9)

g) chắc là 3xyz 

= x2y + xy2 + y2z + yz2 + x2z + xz2 + 3xyz = x2y + xy2 + xyz + y2z + yz2 + xyz + x2z + xz2 + xyz = (x + y + z)(xy + yz + xz)

h) = 23 -(3x)3 = (2 - 3x)(4 + 6x + 9x2)

i) = (x + y - x + y)(x + y + x - y) = 2y*2x = 4xy

k) = (x3 - y3)(x3 + y3) = (x - y)(x2 + xy +y2)(x + y)(x2 - xy +y2).