Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: \(2^{x+2}\cdot3^{x+1}\cdot5^x=10800\)
\(\Leftrightarrow2^x\cdot4\cdot3^x\cdot3\cdot5^x=10800\)
\(\Leftrightarrow30^x=900\)
hay x=2
Vậy: x=2
Gọi số bi của 3 bạn An, Bình, Cường lần lượt là x,y,z .Ta có
x+y+z=74
2x=y
5y=4z
giải hệ tìm dc x,y,z.
Đề nhầm nhé : tỉ lệ của số bi của An và Bình là 5 và 6 chứ ko phải 3 và 6
Gọi số bi của 3 bạn An, Bình, Cường lần lượt là x,y,z
Ta có: \(\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{24}=\frac{z}{30}\)
\(\Rightarrow\frac{x+y+z}{20+24+30}=\frac{74}{74}=1\)
\(\Rightarrow\hept{\begin{cases}x=20\\y=24\\z=30\end{cases}}\)
Vậy số bi của 3 bn An, Bình, Cường lần lượt là 20, 24 và 30 viên bi
\(\Rightarrow\frac{x+y+z}{2+5+4}\)
Gọi số viên bi của ba bạn An, Bình,Cường lần lượt là x,y,z . Theo đề bài ta có :
x + y + z = 188
Mà 4 lần số bi của An bằng với ba lần số bi của Bình và 5 lần số bi của Cường nên \(4x=3y=5z\)
Ta lại có : \(4x=3y=5z\)=> \(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y+z}{\frac{1}{4}+\frac{1}{3}+\frac{1}{5}}=\frac{188}{\frac{47}{60}}=240\)
=> \(\hept{\begin{cases}\frac{x}{\frac{1}{4}}=240\\\frac{y}{\frac{1}{3}}=240\\\frac{z}{\frac{1}{5}}=240\end{cases}}\)=> \(\hept{\begin{cases}x=60\\y=80\\z=48\end{cases}}\)
Vậy số viên bi của ba bạn An,Bình,Cường lần lượt là 60,80,48 viên bi
Câu 5:
Gọi số điểm tốt của ba lớp 7A, 8A, 9A lần lượt là \(a,b,c\)(tốt) \(a,b,c\inℕ^∗\).
Vì số điểm tốt của ba chi đội lần lượt tỉ lệ với \(9,7,8\)nên \(\frac{a}{9}=\frac{b}{7}=\frac{c}{8}\).
Tổng số điểm tốt là \(120\)nên \(a+b+c=120\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{9}=\frac{b}{7}=\frac{c}{8}=\frac{a+b+c}{9+7+8}=\frac{120}{24}=5\)
\(\Leftrightarrow\hept{\begin{cases}a=5.9=45\\b=5.7=35\\b=5.8=40\end{cases}}\).
Câu 4:
Gọi độ dài ba cạnh của tam giác lần lượt là \(a,b,c\left(cm\right)\)\(a,b,c>0\).
Các cạnh của tam giác có số đo tỉ lệ với \(3,4,5\)nên \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\).
Chu vi của tam giác là \(13,2cm\)nên \(a+b+c=13,2\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{13,2}{12}=1,1\)
\(\Leftrightarrow\hept{\begin{cases}a=1,1.3=3,3\\b=1,1.4=4,4\\c=1,1.5=5,5\end{cases}}\)
Gọi số viên bi của 3 bạn An, Bình, Cường lần lượt là a,b,c(viên)(a,b,c∈N*)
Áp dụng t/c dtsbn:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c}{3+5+7}=\dfrac{45}{15}=3\)
\(\Rightarrow\left\{{}\begin{matrix}a=3.3=9\\b=3.5=15\\c=3.7=21\end{matrix}\right.\)
Vậy....
Gọi số viên bi của 3 bạn lần lượt là a,b,c
Ta có:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7};a+b+c=45\)
Áp dụng tcdtsbn , ta có:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c}{3+5+7}=\dfrac{45}{15}=3\)
\(\Rightarrow\left\{{}\begin{matrix}a=9\\b=15\\c=21\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}An:....\\Bình:...\\Cường:...\end{matrix}\right.\)
1) = 3n(32+1) - 2n(22+1)
2)A=m.n.p
\(\frac{m^2}{\frac{2^2}{5^2}}=\frac{n^2}{\frac{3^2}{4^2}}=\frac{p^2}{\frac{1^2}{6^2}}=\frac{m^2+n^2+p^2}{\frac{2^2}{5^2}+\frac{3^2}{4^2}+\frac{1^2}{6^2}}\)
3) \(\frac{a^2}{\text{\text{c}^2}}=\frac{\text{c}^2}{b^2}=\frac{a^2+\text{c}^2}{b^2+\text{c}^2}\)\(\frac{a^2}{\text{c}^2}=\frac{\text{c}^2}{b^2}=\frac{a^2+\text{c}^2}{\text{c}^2+b^2}\)
mà ab=c2
suy ra đpcm
Bài 1: bấm máy
Bài 2:
a)\(2x-3=11\) b)\(\frac{x}{14}=\frac{27}{2}\)
\(\Rightarrow2x=14\Rightarrow x=7\) \(\Rightarrow x=\frac{27\cdot14}{2}=189\)
Bài 3:
Gọi số bi 2 bn đức và dũng lần lượt là a,b (a,b\(\in\)N*)
THeo bài ra ta có:
\(a+b=33;\frac{a}{4}=\frac{b}{7}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{a}{4}=\frac{b}{7}=\frac{a+b}{4+7}=\frac{33}{11}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{4}=3\Rightarrow a=3\cdot4=12\\\frac{b}{7}=3\Rightarrow b=3\cdot7=21\end{cases}}\) (thỏa mãn)
Vậy....
Bài 4: \(\frac{a+b-c}{c}=\frac{c+a-b}{b}=\frac{b+c-a}{a}\)
\(\Rightarrow\frac{a+b-c}{c}+2=\frac{c+a-b}{b}+2=\frac{b+c-a}{a}+2\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)
- Xét a+b+c\(\ne0\) suy ra a=b=c khi đó \(A=2\cdot2\cdot2=8\)
- Xét a+b+c=0 suy ra \(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
Khi đó \(A=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{c+a}{a}=\frac{-c}{b}\cdot\frac{-a}{c}\cdot\frac{-b}{a}=-1\)