Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này giống vật lí wa ha , bài này hồi hôm thi hok kì , mình làm rồi mà
+) H2 + O2 ------> H2O
*) 2H2 + O2 ---------> 2H2O
+) Al + Cl2 --------> AlCl3
*) 2Al + 3Cl2 ----------> 2AlCl3
+) BaCl2 + Na2SO4 --------> BaSO4 + NaCl
*) BaCl2 + Na2SO4 --------> BaSO4 + 2NaCl
2) Ta có: \(\frac{x_1}{y_2}=\frac{x_2}{y_1}\Rightarrow\frac{x_1^2}{y_2^2}=\frac{x_2^2}{y_1^2}=\frac{x_1^2+x_2^2}{y_1^2+y_2^2}=\frac{2^2+3^2}{52}=\frac{1}{4}\)
\(\Rightarrow\frac{x_1^2}{y_2^2}=\frac{1}{4}\Rightarrow y_2^2=16\Rightarrow\)\(\orbr{\begin{cases}y_2=-4\\y_2=4\end{cases}\Rightarrow}\)\(\orbr{\begin{cases}y_1=-6\\y_1=6\end{cases}}\)
=> KL....
I2x+3I=x+2
TH1: Nếu \(x\le-\frac{3}{2}\)(*), =>I2x+3I=-2x-3
PT: -2x-3=x+2 <=> x=\(-\frac{5}{3}\)(tm (*))
TH2: Nếu \(x>-\frac{3}{2}\)(**), => I2x+3I=2x+3
PT: 2x+3=x+2 => x=-1 (tm (**))
Vậy x=...
gọi
\(b_1,b_2,..b_n\) là phép chia lấy phần dư của các \(a_1,a_2,...,a_n\) cho n
.Giả sử không có số nào chia hết cho n, thì các \(b_i\) đều là các số tự nhiện nằm trong khoảng \(1\le b_i\le n-1\)
do có n phần tử \(b_i\) mà chỉ có n-1 giá trị nên theo nguyên lí dirichlet tồn tại hai số \(b_i\) \(=b_j\)
Hay nói cách khác \(a_i\text{ và }a_j\text{ đồng dư mode n}\)
hay hiệu \(a_i-a_j\) chia hết cho n
vậy ta có điều phải chứng minh
Câu 1 : Đốt hết 16,8 g sắt trong bình oxi dư. Tìm khối lượng F3O4 thu được.
Câu 2 : Đốt hết 5,4 g Al trong bình oxi dư. Tìm khối lượng Al2O3 thu được.
#