K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2018

Do AB// CD=) \(\widehat{ABC}\)=\(\widehat{BC\text{D}}\) (Hai góc so le trong)   (*)

Do AB//CD=) \(\widehat{ABC}\)=\(\widehat{B\text{D}C}\) (Hai góc đồng vị)        (**)

Từ (*) và (**) =) \(\widehat{BC\text{D}}\)=\(\widehat{B\text{D}C}\) 

Mà \(\widehat{CB\text{D}}\)\(90^0\) 

=) Tam giác BCD là tam giác vuông cân tại B

=) BC = BD = 30 cm

Vậy BD = 30 cm

9 tháng 11 2018

cam ơn

22 tháng 4 2017

áp dụng đinh lí pi-ta-go, ta tính được BC=20cm (1)

\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)( phân giác AD)\(\Leftrightarrow\dfrac{BD}{CD}=\dfrac{12}{16}=\dfrac{3}{4}\) (2)

từ (1),(2)\(\Rightarrow\left\{{}\begin{matrix}BD=\dfrac{60}{7}\\CD=\dfrac{80}{7}\end{matrix}\right.\)(3)

ta có \(AD=\dfrac{AB.AC}{BD}=9,6\)(4)

từ (3),(4)\(\Rightarrow\left\{{}\begin{matrix}S_{ABD}=\dfrac{288}{7}\\S_{ACD}=\dfrac{384}{7}\end{matrix}\right.\)\(\Rightarrow\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{3}{4}\)

30 tháng 4 2017

áp dụng đ/l py ta go trong tam giác vuông ABC có

BC ^2 =AB^2 +AC^2 =>12^2 + 16^2=400

=> BC =\(\sqrt{400}\)=20cm

ta có AD là phân giác của tam giác ABC

=> \(\dfrac{BD}{DC}=\dfrac{AB}{AC}\)

áp dụng tính chất tỉ lệ thức ta có

\(\dfrac{BD+DC}{DC}=\dfrac{AB+AC}{AC}hay\dfrac{20}{DC}=\dfrac{28}{16}\)

=> DC=\(\dfrac{80}{7}\)cm

=> BD=BC -DC=20-\(\dfrac{80}{7}\)=\(\dfrac{60}{7}\)cm

kẻ AH vuông góc vs BC (H thuộc BC)

gọi k là tỉ số diện tích 2 tam giác\(\dfrac{SADB}{SADC}=\dfrac{\dfrac{1}{2}\cdot AH\cdot BD}{\dfrac{1}{2}\cdot AH\cdot DC}=k^2=>k=\dfrac{BD}{DC}=\dfrac{\dfrac{60}{7}}{\dfrac{80}{7}}=\dfrac{3}{4}=>k^2=\left(\dfrac{3}{4}\right)^2=\dfrac{9}{16}\)

xét tam giác ABH và tam giác CBA

góc AHB=BAC(=90 độ)

góc B chung

=> tam giác ABH đồng dạng vs tam giác CBA (g.g)

=>AH/CA=AB/BC=> AH/16=12/20=> AH =9.6cm

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giácBài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. a) Tính độ dài AB (câu này tớ làm đc rồi)b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường...
Đọc tiếp

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giác

Bài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. 

a) Tính độ dài AB (câu này tớ làm đc rồi)

b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)

Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân giác góc C cắt BA tại N

a) Cm: MN//AC 

b) Tính MN theo a,b

Bài 4: Cho tam giác ABC cân ở A, phân giác trong BD, BC=10cm, AB=15cm

a) Tính AD, DC

b) Đường phân giác ngoài góc B của tam giác ABC cắt đường thẳng AC tại D'. Tính D'C

Bài 5: Cho tam giác ABC có AB=5cm, AC=6cm, BC=7cm. Gọi G là trọng tâm tam giác ABC, O là giao điểm của 2 đường phân giác BD, AE

a) Tính độ dài đoạn thẳng AD

b) Cm: OG//AC

HD: a) AD=2,5cm b) OG//DM => OG//AC

Bài 6: Cho tam giác ABC. Gọi I là trung điểm của cạnh BC. Đường phân giác của góc AIB cắt cạnh AB ở M. Đường phân giác của góc AIC cắt cạnh AC ở N

a) CMR: MN//BC

b) Gọi giao điểm của DE và AM là O. CM: OM=ON

c) Tam giác ABC phải thoả mãn điều kiện gì để có MN=AI

d) Tam giác ABC phải thoả mãn điều kiện gì để có MN vuông góc với AI

0
DD
20 tháng 7 2021

Câu 3. 

Tam giác \(ABC\)vuông cân tại \(A\)nên \(\widehat{ACB}=45^o\).

Tam giác \(BCD\)vuông cân tại \(B\)nên \(\widehat{BCD}=45^o\).

\(\widehat{ACD}=\widehat{ACB}+\widehat{BCD}=45^o+45^o=90^o\)

\(\Rightarrow AC\perp CD\)

mà \(AC\perp AB\)

nên \(AB//CD\)

suy ra \(ABCD\)là hình thang vuông. 

DD
20 tháng 7 2021

Câu 4. 

Kẻ \(BE\perp CD\)khi đó \(\widehat{BED}=90^o\).

Tứ giác \(ABED\)có \(4\)góc vuông nên là hình chữ nhật, mà \(AB=AD\)nên \(ABED\)là hình vuông. 

\(BE=DE=AB=2\left(cm\right)\)

\(EC=CD-DE=4-2=2\left(cm\right)\)

Suy ra tam giác \(BEC\)vuông cân tại  \(E\)

Suy ra \(\widehat{EBC}=\widehat{ECB}=45^o\)

\(\widehat{ABC}=\widehat{ABE}+\widehat{EBC}=90^o+45^o=135^o\)