Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)
\(a)\)
\(\text{Ta có}:\)
\(\Delta ABC\)\(\text{vuông tại}\)\(A\)
\(\rightarrow BC^2=AB^2+AC^2\)
\(\rightarrow AC^2=BC^2-AB^2\)
\(\rightarrow AC^2=15^2-9^2\)
\(\rightarrow AC^2=144\)
\(\rightarrow AC=12\)
\(\rightarrow AB< AC< BC\)
\(\rightarrow\widehat{C}< \widehat{B}< \widehat{A}\)
\(\text{Ta có:}\)
\(AB\perp AC\rightarrow\widehat{BAC}=\widehat{EAC}\)
\(\rightarrow AB=AE\rightarrow A\)\(\text{là trung điểm}\)\(BE\)
\(b)\)
\(\text{Theo phần a), ta có:}\)\(AB=AE\rightarrow A\text{ }\)\(\text{là trung điểm}\)\(BE\)
\(\rightarrow CA\)\(\text{là trung tuyến}\)\(\Delta CBE\)
\(\text{Mà}\)\(BH\)\(\text{là trung tuyến}\)\(\Delta BCE\)\(,\)\(BH\text{∩}\text{ }CA=M\)
\(\rightarrow M\text{ }\)\(\text{là trọng tâm}\)\(\Delta BCE\)
\(\rightarrow CM=\frac{2}{3}CA\)
\(\rightarrow CM=8\)
\(c)\)
\(\text{Theo phần a)}\)\(\rightarrow\widehat{ECA}=\widehat{ACB}\)
\(\rightarrow\widehat{CEA}=\widehat{CBA}\)
\(\text{Do}\)\(AK//CE\rightarrow\widehat{KAB}=\widehat{AEC}=\widehat{CBA}=\widehat{KBA}\rightarrow KB=KA\)
\(\widehat{KAC}=\widehat{ECA}=\widehat{ACB}=\widehat{ACK}\rightarrow KA=KC\)
\(\rightarrow KB=KC\rightarrow K\)\(\text{là trung điểm}\)\(BC\)
\(\text{Mà}\)\(M\)\(\text{là trọng tâm}\)\(\Delta CBE\rightarrow E,MK\)\(\text{thẳng hàng}\)
xét tam giác ABE và tam giác ADE
AE chung
góc BAE = góc DAE(AE la tia phân giác của góc E)
AB = AD ( gt)
=> tam giác ABE = tam giac DAE ( c.g.c)
b) xét tam giác ABI và tam giác ADI
AI chung
góc BAE = góc DAE
tam giác ABI=tam giác ADI
=> BI = DI ( 2 cạnh t/ứ )
=> I là trung điểm của BD