Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,xét tam giác ADB và AEC, ta có
AB=AC (gt) DB=CE(gt)
ABC=ACB=>ABD=ACE
=> tam giác ADB=AEC(c.g.c)
<=>AD=AE
=>ADE là tam giác cân
b, ta có ABC là tam giác cân
=>A=B=C=180/3=60
có góc ABD=180-60=120
=>DAB=ADB=(180-120)/2=30
góc EAC=DAB=30
<=>DAE=DAB+EAC+BAC=30+30+60=120
Bài 5:
Tgiac ABC vuông cân tại A => góc CBA = 45 độ
Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB
Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC
=> góc D = 45/2 = 22,5 độ
và góc ACD = 22,5 + 45 = 67,5 độ
Vậy số đo các góc của tgiac ACD là ...
Bài 6:
Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ
Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ
cmtt với tgiac CBE => góc DEB = 70 độ
=> góc DBE = 180-70-70 = 40 độ
Bài 7:
Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)
Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C
=> đpcm
Bài 8: mai làm hihi
a) Có : \(\widehat{ABC}+\widehat{ABD}=\widehat{ACB}+\widehat{ACE}=180^o\)
Mà : \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
-Xét tam giác ABD và ACE có :
AB=AC (tam giác ABC cân tại A)
BD=CE(đều bằng AB)
\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
=> Tam giác ABD=ACE(c.g.c)
=> AD=AE
=> Tam giác ADE cân tại A(đccm)
b) Tam giác ABC cân tại A có : \(\widehat{BAC}=40^o\)
\(\Rightarrow\widehat{ABC}=\widehat{ACB}=\frac{180^o-40^o}{2}=70^o\)
- Có : \(\widehat{ABC}+\widehat{ABD}=180^o\)
\(\Rightarrow70^o+\widehat{ABD}=180^o\)
\(\Rightarrow\widehat{ABD}=110^o\)
- Xét tam giác ABD cân tại B(BD=AB) có :
\(\widehat{ABD}+\widehat{BAD}+\widehat{ ADB}=180^o\)
\(\Rightarrow110^o+\widehat{BAD}+\widehat{ADB}=180^o\)
\(\Rightarrow\widehat{BAD}=\widehat{BDA}=\frac{180^o-110^o}{2}=35^o\)
- Tương tự, ta có : \(\widehat{AEC}=\widehat{CAE}=35^o\)
- Có : \(\widehat{DAE}=\widehat{DAB} +\widehat{CAE}+\widehat{BAC}=35^o+35^o+40^o=110^o\)
Vậy : \(\widehat{D}=\widehat{E}=35^o,\widehat{DAE}=110^o\)
c) Tam giác ABD cân tại B(AB=BD) có \(BH\perp DA\)
=> HD=HA(t/c đg TT,PG,cao,.. của tam giác cân)
Tương tự có AK=KE
Mà : AD=AE(tam giác ADE cân tại A)
=> AH=AK
-Xét tam giác AHO và AKO, có :
AH=AK(cmt)
\(\widehat{AHO}=\widehat{AKO}=90^o\)
AO-cạnh chung
=> Tam giác AHO=AKO(cạnh huyền-cạnh góc vuông)
=> HO=OK(đccm)
d) Do tam giác AHO=AKO(cmt)
=> \(\widehat{HAO}=\widehat{KAO}\)
\(\Rightarrow\widehat{HAB}+\widehat{BAO}=\widehat{KAC}+\widehat{CAO}\)
Mà : \(\widehat{HAB}=\widehat{KAC}=35^o\left(cmt\right)\)
Mà :\(\widehat{BAO}+\widehat{CAO}=\widehat{BAC}\)
\(\Rightarrow\widehat{BAO}=\widehat{CAO}=\frac{\widehat{BAC}}{2}=\frac{40}{2}=20^o\)
- Gọi giao điểm của AO và BC là I
Xét tam giác AIB có : \(\widehat{BAI}+\widehat{ABI}+\widehat{AIB}=180^o\)
\(\Rightarrow20^o+70^o+\widehat{AIB}=180^o\)
\(\Rightarrow90^o+\widehat{AIB}=180^o\)
\(\Rightarrow\widehat{AIB}=90^o\)
\(\Rightarrow AI\perp BC\left(đccm\right)\)
#H
Bạn tự vẽ hình nha!
a.
Ta có:
- B1 + B2 = 180
- C1 + C2 = 180
mà B1 = C1 (tam giác ABC cân tại A)
=> B2 = C2 (1)
Xét tam giác ADB và tam giác AEC:
AB = AC (tam giác ABC cân tại A)
B2 = C2 (theo 1)
BD = CE (gt)
=> Tam giác ADB = ACE (c.g.c)
=> AD = AE (2 cạnh tương ứng)
=> Tam giác ADE
b.
Xét tam giác AHB vuông tại A và tam giác AKC vuông tại K:
AB = AC (tam giác ABC cân tại A)
A1 = A2 (tam giác ADB = tam giác AEC)
=> Tam giác AHB = Tam giác AKC (cạnh huyền - góc nhọn)
=> BH = CK (2 cạnh tương ứng)
AH = AK (2 cạnh tương ứng)
c.
Xét tam giác HDB vuông tại H và tam giác KEC vuông tại K:
BH = CK (theo câu b)
BD = CE (gt)
=> Tam giác HDB = Tam giác KEC (cạnh huyền - cạnh góc vuông)
Ta có:
DBH = IBC (2 góc đối đỉnh)
KCE = ICB (2 góc đối đỉnh)
mà DBH = KCE (tam giác HDB = tam giác KEC)
=> IBC = ICB
=> Tam giác IBC cân tại I
- Ai đó giúp tớ giải bài toán này với :v Tớ cảm ơn nhiều nhiều nhiều lắm luôn ý!
1Tại sao lại B=2D,mà chưa hề có điểm B trong đề
2aDo tam giác ABC cân đỉnh A=>góc ABC=góc ACB
=>góc ABM=góc ACN(góc ABM+góc ABC=góc ACN+GÓC ACB)
2bTa có:góc ABM=góc ACN(CMT).
Xét tam giác ABM và tam giác ACN.Bạn tự chứng minh có bằng nhau(c.g.c)
=>AM=AN=>AMN là tam giác cân
3aDo tam giác ABC cân=>góc ABC=góc ACB
Xét hai tam giác vuông HBD và KCE(Cạnh huyền-Góc nhọn).Bạn tự chứng minh.=>HB=CK
3bDo tam giác ABC cân=>góc ABC=góc ACB=>góc ABH=góc ACK
Bạn tự chứng minh hai tam giác AHB và AKC bằng nhau(c.g.c).Nhớ phải sử dung HB=CK
3cTôi không hiểu đề
~`!@#$%^&*()_-+=|\{[}]''":;>.<,?/
tớ chịu đầu hàng ?!
*_* ! soryyy
Bài 3 :
A B C H K I
Gọi gia điểm của các đường trung trực với AB,Ac lần lượt là H ,K
Ta có :AH + HB = AB
AK + KC = AC
mà AB = AC ( tam giác ABC cân tại A)
=> AH + HB = AK + KC
mà CH và Bk lần lượt là trung trực của AB ,AC
=> AH = HB = AK = KC
Xét tam giác AHI và tam giác AKI có
AHI = AKI = 90
AH = AK ( cmt )
AI : cạnh chung
=> tam giác AHI = tam giác AKI ( canh huyền - cạnh gosc vuông )
=> ^HAI = ^KAI ( 2 góc tương ứng )
=> AI là tia phân giác của ^A
Vậy AI là tia phân giác của ^A
Bài 1
A B C D E H K
a, Vì tam giác ABC cân tại A => AB = AC và ^ABC = ^ACB
Ta có : ^ABC + ^ABD = 180 (kề bù )
^ACB + ^ ACE = 180 ( kề bù )
mà ^ABC = ^ACB
=> ^ABD = ^ ACE
Xét tam giác ABD và tam giác ACE có :
AB =AC ( tam giác ABc cân tại a )
^ABD = ^ACE ( cmt )
BD = CE ( gt)
=> tm giác ABD = tam giác ACE ( c.g.c)
=> ^ADB = ^AEC ( 2 góc tương ứng )
hay ^HDB = ^KEC
Xét tam giác HBD và tam gisc KEC có :
^DHB = ^EKC = 90
BD = CE (gt)
HDB = KEc ( cmt )
=> tam giác HBD = tam giác KCE ( cạnh huyền - góc nhọn )
=> HB = Ck ( 2 canh tương ứng )
Vậy HB = Ck
b,Xét tam giác ABH và tam giác ACk có
AHB = AKC = 90
HB = CK ( cmt )
AB = AC
=> tam giác ABH = tam giác ACK ( anh huyền - canh góc vuồng )
Vậy tam giác ABH =tam giác ACK