Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Xét tứ giác ABEF có
BE//AF
BE=AF
BE=BA
Do đó: ABEF là hình thoi
b: Xét ΔBIE có BI=BE
nên ΔBIE cân tại B
mà góc IBE=60 độ
nên ΔBIE đều
=>góc I=60 độ
Xét tứ giác AFEI có
EF//AI
góc I=góc A
Do đó AFEI là hình thang cân
c: Xét ΔBAD có
BF là đường trung tuyến
BF=AD/2
Do đó: ΔBAD vuông tại B
=>DB vuông góc với BI
Xét tứ giác BICD có
BI//CD
BI=CD
Do đó: BICD là hình bình hành
mà DB vuông góc với BI
nên BICD là hình chữ nhật
d: Xét ΔAED có
EF la trung tuyến
FE=DA/2
Do đó: ΔAED vuông tại E
=>góc AED=90 độ
Bài 1:
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
b: Ta có: AD⊥AC
mà AD//BC
nên BC⊥CA
=>ΔCBA vuông tại C
mà CM là đường trung tuyến
nên CM=MA
=>ΔMCA cân tại M
=>\(\widehat{MAC}=\widehat{MCA}\)
mà \(\widehat{MAC}=\widehat{DCA}\)
nên \(\widehat{MCA}=\widehat{DCA}\)
hay CA là tia phân giác của góc MCD
Bài 1:
a: Xét tứ giác ABCD có góc B+góc D=180 độ
nên ABCD là tứ giác nội tiếp
=>góc BAC=góc BDC và góc DAC=góc DBC
mà góc CBD=góc CDB
nên góc BAC=góc DAC
hay AC là phân giác của góc BAD
b: Ta có: góc BCA=góc BAC
=>góc BCA=góc CAD
=>BC//AD
=>ABCD là hình thang
mà góc B=góc BCD
nên ABCD là hình thang cân
Bài 2 :
A B C D M E
a, Xét tam giác ABC ta có :
D là trung điểm AB
M là trung điểm CB
=)) DM là đường TB tam giác ABC
=)) DM // AC hay DM // AE (1)
Ta có : E là trung điểm AC
M là trung điểm BA
=)) EM là đường TB tam giác ABC
=)) EM // AB hay EM // AD (2)
Từ 1;2 =)) Tứ giác ADME là hình bình hành
b, Nếu tam giác ABC cân tại A => AM là đường trung tuyến AM
=)) AM đồng thời là tia phân giác của ^A
Xét hình bình hành ADME có 2 đường chéo AM là tia phân giác của ^A (cmt)
=)) Tứ giác ADME là hình thoi
c, Nếu tam giác ABC vuông tại A => ^A = 90^0
Xét hình bình hành ADME có ^A =90^0
=)) Tứ giác ADME là hình chữ nhật
2/
a/ hình thang ABCD có
AB // EF
==> AB // KF
xét tam giác ABC có
F là trung điểm của BC
AB // KF
==> KF là đường trung bình của tam giác ABC
==> K là trung điểm của AC
==> AK = KC
b/
E là trung điểm AD
F là trung điểm BC
==> EF là đường trung bình của hình thang ABCD
==> EF = (AB + CD) / 2 = (4 + 10) / 2 = 7(cm)
KF là đường trung bình của tam giác ABC nên
KF = AB / 2 = 4 / 2 = 2(cm)
==> EK = EF - KF = 7 - 2 = 5(cm)
vậy EK = 5(cm), KF = 2 (cm)
3/
a/ ta có
D là trung điểm của AB
M là trung điểm của BC
==> DM là đường trung bình của tam giác ABC
==> Dm // AC
==> DM // AE ( E thuộc AC, DM // AC)
chứng minh tương tự ta có
ME là đường trung bình của tam giác ABC
==> AD // ME
tứ giác ADME có DM // AE, AD // ME nên là HBH
b/ ( nếu tam giác ABC cân tại A)
tam giác ABC cân tại A ==> AB = AC
AD = 1/2 AB (D là trung điểm của AB)
AE = 1/2 AC (E là trung điểm của AC)
==> AD = AE
c/ (nếu tam giác ABC vuông)
ta có
tứ giác ADME là HBH
góc A = 90 độ
==> tứ giác ADME là HCN
d/ ta có
AB^2 + AC^2 = BC^2
6^2 + 8^2 = 100
==> BC = 10(cm)
AM là đường trung tuyến của tam giác ABC
==> AM = 1/2 BC = 1/2 . 10 = 5(cm)
vậy AM = 5cm
Bài 2:Cho mk ý kiến,sai đề à???4cm=6cm nhé
Bài 3:
Bài 4:
Nối D với E, nối D với M:
Chứng minh được ED//FB (BEDF là hình thoi) (1)
BF là đường trung bình tam giác AMD
=> MD//FB (tc) (2)
(1),(2) => MD trùng với ED (định lý) ( Qua 1 điểm ko thuộc đường thẳng a có 1 và chỉ 1 đường thẳng đi qua điểm đó và song song với đường thẳng a )
từ đó bạn có thể cm BMCD là hình chữ nhật ( nếu cần )
( xét từ1 giác BDCM có BC cắt DM tại trung điểm của mỗi đoạn ->BMCD là Hình chữ nhật)
Bài 5:
Bài 1:
A B C D M N P Q E F
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
Câu 1:
a)
\(BM=MC=\frac{1}{2}BC\) (M là trung điểm của BC)
\(AN=ND=\frac{1}{2}AD\) (N là trung điểm của AD)
mà \(BC=AD\) (ABCD là hình bình hành)
\(\Rightarrow AN=ND=BM=MC\) (1)
mà ND // BM
=> BMDN là hình bình hành
=> BN // MD (2)
=> MDKB là hình thang
b)
MC = AN (theo 1)
mà MC // AN (ABCD là hình bình hành)
=> AMCN là hình bình hành
=> AM // CN (3)
Từ (2) và (3)
=> MPNQ là hình bình hành (4)
BM = AN (theo 1)
mà BM // AN (ABCD là hình bình hành)
=> ABMN là hình bình hành
mà AB = BM \(\left(=\frac{1}{2}BC\right)\)
=> ABMN là hình thoi
=> AM _I_ BN
=> MPN = 900 (5)
Từ (4) và (5)
=> MPNQ là hình chữ nhật
c)
MPNQ là hình vuông
<=> MN là tia phân giác của PMQ
mà MN là đường trung tuyến của tam giác MDA vuông tại M (N là trung điểm của AD; MPNQ là hình chữ nhật)
=> Tam giác MDA vuông cân tại M có MN là đường trung tuyến
=> MN là đường cao của tam giác MDA
=> MNA = 900
mà MNA = ABM (ABMN là hình thoi)
=> ABM = 900
mà ABCD là hình bình hành
=> ABCD là hình chữ nhật
Câu 2:
a)
\(AE=EB=\frac{AB}{2}\) (E là trung điểm của của AB)
\(CF=FD=\frac{CD}{2}\) (F là trung điểm của của CD)
mà AB = CD (ABCD là hình bình hành)
=> AE = EB = CF = FD (1)
mà AE // CF (ABCD là hình bình hành)
=> AECF là hình bình hành
b)
AE = FD (theo 1)
mà AE // FD (ABCD là hình bình hành)
=> AEFD là hình bình hành
mà DA = AE \(\left(=\frac{1}{2}AB\right)\)
=> AEFD là hình thoi
=> AF _I_ ED
=> EMF = 900 (2)
EB = FD (theo 1)
mà EB // FD (ABCD là hình bình hành)
=> EBFD là hình bình hành
=> EM // NF
mà EN // MF (AECF là hình bình hành)
=> EMFN là hình bình hành
mà EMF = 900 (theo 2)
=> EMFN là hình chữ nhật
c)
EMFN là hình vuông
<=> EF là tia phân giác của MEN
mà EF là đường trung tuyến của tam giác ECD vuông tại E (F là trung điểm của CD; EMFN là hình chữ nhật)
=> Tam giác ECD vuông cân tại E có EF là đường trung tuyến
=> EF là đường cao của tam giác ECD
=> EFD = 900
mà EFD = DAE (AEFD là hình thoi)
=> DAE = 900
mà ABCD là hình bình hành
=> ABCD là hình chữ nhật