Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) Nếu tia OC nằm giữa hai tia OA và OA' thì:\
AOC+COA'=AOA'
=> 90 + COA' = AOA'
mà AOA' là góc kề bù nên AOA'=180 độ
=> 90+ COA' = 180độ
=> COA= 180 -90
=>COA=90 độ
Vì tia OB' là tia phân giác của góc COA' nên :
B'OA' = 90:2
=> B'OA' =45
Hai góc AOB và OB'A' là hai góc đối đỉnh vì AOB=OB'A'( hay 45 =45)
BÀI 1
b) Vì tia OB nằm giữa hai tia OD và OA nên:
AOB + BOD=ADO
=> 45 + 90 = AOD
=> AOD=135 độ
Vì tia OD nằm giữa hai tia OA và OA' nên:
AOD+DOA'=AOA'
=> 135+DOA'=AOA'
mà AOA' là góc kề bù nên AOA' = 180 độ
=> 135+ DOA'= 180 độ
=> DOA'=180 độ -135 độ
=> DOA'=45 độ
O D C A E B
a) Ta có:
\(\widehat{DOA}=\widehat{COB}\left(=160^o-\widehat{DOC}\right)\) (1)
Mà \(\widehat{DOA}=\widehat{EOB}\) (2 góc đối đỉnh) (2)
Từ (1) và (2) \(\Rightarrow\widehat{COB}=\widehat{BOE}\left(đpcm\right)\)
b) Vì \(\widehat{COB}=\widehat{BOE}\) (cmt)
\(\Rightarrow OB\) là phân giác của \(\widehat{COE}\)
Bài 1
x x' y y' O ) 1 2 3 4 m n
a
Ta có:
\(\widehat{O_1}=\widehat{O_2}=60^0\left(đ.đ\right)\)
\(\widehat{O_1}+\widehat{O_2}=180^0\Rightarrow\widehat{0_2}=180^0-\widehat{O_1}=180-60^0=120^0\)
\(\widehat{O_2}=\widehat{O_4}=120^0\left(đ.đ\right)\)
b
Ta có:
\(\widehat{x'Oy}=\widehat{y'Ox}\Rightarrow\frac{1}{2}\widehat{x'Oy}=\frac{1}{2}\widehat{y'Ox}\Rightarrow\widehat{yOn}=\widehat{xOm}\)
\(\widehat{x'Oy}+\widehat{yOx}=180^0\)
\(\Rightarrow2\cdot\widehat{yOn}+\widehat{yOx}=180^0\)
\(\Rightarrow\widehat{yOn}+\widehat{yOx}+\widehat{xOm}=180^0\)
\(\Rightarrowđpcm\)
Bài 2
A O B C D M
a
Ta có:
\(\widehat{BOD}=\widehat{AOC}=90^0\Rightarrow\widehat{BOC}+\widehat{COD}=\widehat{AOD}+\widehat{COD}\Rightarrow\widehat{BOC}=\widehat{AOD}\)
b
Ta có:
\(\widehat{BOM}=\widehat{BOC}+\widehat{COM}=\widehat{AOD}+\widehat{MOD}=\widehat{MOA}\)
Hiển nhiên OM nằm giữa \(\widehat{AOB}\) nên suy ra đpcm
45 độ O z y y' x' x t
a) Ox' và Ox là hai tia đối nhau nên
\(\widehat{xOx'}=180^o\)mà \(\widehat{xOz}=90^o\)
\(\Rightarrow\widehat{x'Oz}=90^o\)
Mặt khác Oy' là tia phân giác của \(\widehat{x'Oz}\)
nên \(\widehat{x'Oy'}=\widehat{zOy'}=\frac{1}{2}\cdot90^o=45^o\)
\(\Rightarrow\widehat{x'Oy'}=\widehat{xOy}=45^o\)
Mà Ox' và Ox là 2 tia đối nhau, 2 tia Oy' và Oy thuộc 2 mặt phẳng đối nhau bờ là xx'
Do đó \(\widehat{x'Oy'}\)và \(\widehat{xOy}\)là 2 góc đối đỉnh. ( đpcm )
b) Ta có: Oy' và Oy là 2 tia đối nhau ( cmt )
\(\Rightarrow\widehat{yOt}+\widehat{tOy'}=180^o\)
\(\Rightarrow90^o+\widehat{tOy'}=180^o\)
\(\Rightarrow\widehat{tOy'}=90^o\)
Lại có Oy' và Oy thuộc 2 nửa mặt phẳng đối nhau bờ là xx' nên Ox' nằm giữa 2 tia Oy và Oy'
\(\Rightarrow\widehat{x'Ot}+\widehat{x'Oy'}=\widehat{tOy'}\)
\(\Rightarrow\widehat{x'Ot}+45^o=90^o\)
\(\Rightarrow\widehat{x'Ot}=45^o\)
Vậy \(\widehat{x'Ot}=45^o\)