Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)
\(=\left(x+1\right)\left[3x\left(x+1\right)-5x^2+7\right]\)
\(=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)\)
\(=\left(x+1\right)\left(-2x^2+3x+7\right)\)
\(=-\left(x+1\right)\left(2x^2-3x-7\right)\)
b) \(\left(x+y\right)\left(2x-y\right)-\left(3x-y\right)\left(y-2x\right)\)
\(=\left(x+y\right)\left(2x-y\right)+\left(3x-y\right)\left(2x-y\right)\)
\(=\left(2x-y\right)\left(x+y+3x-y\right)\)
\(=4x\left(2x-y\right)\)
c) \(5u\left(u-v\right)^2+10u^2\left(v-u\right)^2\)
\(=5u\left(u-v\right)^2+10u^2\left(u-v\right)^2\)
\(=5u\left(u-v\right)^2\left(1+2u\right)\)
Trả lời:
a, 3x ( x + 1 )2 - 5x2 ( x + 1 ) + 7 ( x + 1 )
= ( x + 1 )[ 3x ( x + 1 ) - 5x2 + 7 ]
= ( x + 1 )( 3x2 + 3x - 5x2 + 7 )
= ( x + 1 )( - 2x2 + 3x + 7 )
b, ( x + y )( 2x - y ) - ( 3x - y )( y - 2x )
= ( x + y )( 2x - y ) + ( 3x - y )( 2x - y )
= ( 2x - y )( x + y + 3x - y )
= 4x ( 2x - y )
c, 5u ( u - v )2 + 10u2 ( v - u )2
= 5u ( u - v )2 + 10u2 ( u - v )2
= 5u ( u - v )2( 1 + 2u )
Câu 1:
$(2x^2-3)(x+5)=2x^2(x+5)-3(x+5)=2x^3+10x^2-3x-15$
Câu 2:
a.
$(x+3)^2=x^2+2.x.3+3^2=x^2+6x+9$
b.
$y^2-25=y^2-25$
1: \(F=\left(\dfrac{-1}{2}-2\right)^3-\left(-\dfrac{1}{2}+3\right)^3+\left(-2+\dfrac{3}{2}\right)^3+\left(-\dfrac{1}{2}+1\right)^2\)
\(=\dfrac{-125}{8}-\dfrac{125}{8}+\dfrac{-1}{8}+\dfrac{1}{4}\)
\(=\dfrac{-251}{8}+\dfrac{1}{4}=\dfrac{-249}{8}\)
2:\(N=\left(-1-1\right)^2-\left(-1+\dfrac{1}{8}\right)+\left(-1+1\right)^3\)
=4+1-1/8
=5-1/8=39/8
Bài 1:
a) Ta có: \(VT=\frac{-u^2+3u-2}{\left(u+2\right)\left(u-1\right)}\)
\(=\frac{-\left(u^2-3u+2\right)}{\left(u+2\right)\left(u-1\right)}\)
\(=\frac{-\left(n^2-u-2u+2\right)}{\left(u+2\right)\left(u-1\right)}\)
\(=\frac{-\left[u\left(u-1\right)-2\left(u-1\right)\right]}{\left(u+2\right)\left(u-1\right)}\)
\(=\frac{-\left(u-1\right)\left(u-2\right)}{\left(u+2\right)\left(u-1\right)}\)
\(=\frac{2-u}{u+2}\)(1)
Ta có: \(VP=\frac{u^2-4u+4}{4-u^2}\)
\(=\frac{\left(u-2\right)^2}{-\left(u-2\right)\left(u+2\right)}\)
\(=\frac{-\left(u-2\right)}{u+2}\)
\(=\frac{2-u}{u+2}\)(2)
Từ (1) và (2) suy ra \(\frac{-u^2+3u-2}{\left(u+2\right)\left(u-1\right)}=\frac{u^2-4u+4}{4-u^2}\)
b) Ta có: \(VT=\frac{v^3+27}{v^2-3v+9}\)
\(=\frac{\left(v+3\right)\left(v^3-3u+9\right)}{v^2-3u+9}\)
\(=v+3=VP\)(đpcm)
Bài 2:
a) Ta có: \(\frac{3x^2-2x-5}{M}=\frac{3x-5}{2x-3}\)
\(\Leftrightarrow\frac{3x^2-5x+3x-5}{M}=\frac{3x-5}{2x-3}\)
\(\Leftrightarrow\frac{x\left(3x-5\right)+\left(3x-5\right)}{M}=\frac{3x-5}{2x-3}\)
\(\Leftrightarrow\frac{\left(3x-5\right)\left(x+1\right)}{M}=\frac{3x-5}{2x-3}\)
\(\Leftrightarrow M=\frac{\left(3x-5\right)\left(x+1\right)\left(2x-3\right)}{3x-5}\)
\(\Leftrightarrow M=\left(x+1\right)\left(2x-3\right)\)
\(\Leftrightarrow M=2x^2-3x+2x-3\)
hay \(M=2x^2-x-3\)
Vậy: \(M=2x^2-x-3\)
b) Ta có: \(\frac{2x^2+3x-2}{x^2-4}=\frac{M}{x^2-4x+4}\)
\(\Leftrightarrow\frac{2x^2+4x-x-2}{\left(x-2\right)\left(x+2\right)}=\frac{M}{\left(x-2\right)^2}\)
\(\Leftrightarrow\frac{2x\left(x+2\right)-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{M}{\left(x-2\right)^2}\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(2x-1\right)}{\left(x+2\right)\left(x-2\right)}=\frac{M}{\left(x-2\right)^2}\)
\(\Leftrightarrow\frac{M}{\left(x-2\right)^2}=\frac{2x-1}{x-2}\)
\(\Leftrightarrow M=\frac{\left(2x-1\right)\left(x-2\right)^2}{\left(x-2\right)}\)
\(\Leftrightarrow M=\left(2x-1\right)\left(x-2\right)\)
\(\Leftrightarrow M=2x^2-4x-x+2\)
hay \(M=2x^2-5x+2\)
Vậy: \(M=2x^2-5x+2\)
Bài 3:
a) Ta có: \(\frac{x+1}{N}=\frac{x^2-2x+4}{x^3+8}\)
\(\Leftrightarrow\frac{x+1}{N}=\frac{x^2-2x+4}{\left(x+2\right)\left(x^2-2x+4\right)}\)
\(\Leftrightarrow\frac{x+1}{N}=\frac{1}{x+2}\)
\(\Leftrightarrow N=\left(x+1\right)\left(x+2\right)\)
hay \(N=x^2+3x+2\)
Vậy: \(N=x^2+3x+2\)
n) Ta có: \(\frac{\left(x-3\right)\cdot N}{3+x}=\frac{2x^3-8x^2-6x+36}{2+x}\)
\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=\frac{2x^3+4x^2-12x^2-24x+18x+36}{x+2}\)
\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{\left(x+3\right)}=\frac{2x^2\left(x+2\right)-12x\left(x+2\right)+18\left(x+2\right)}{x+2}\)
\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=\frac{\left(x+2\right)\left(2x^2-12x+18\right)}{x+2}\)
\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=2x^2-12x+18\)
\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=2x^2-6x-6x+18=2x\left(x-3\right)-6\left(x-3\right)=2\cdot\left(x-3\right)^2\)
\(\Leftrightarrow N\cdot\left(x-3\right)=\frac{2\left(x-3\right)^2}{x+3}\)
\(\Leftrightarrow N=\frac{2\left(x-3\right)^2}{x+3}:\left(x-3\right)=\frac{2\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}\)
\(\Leftrightarrow N=\frac{2\left(x-3\right)}{x+3}\)
hay \(N=\frac{2x-6}{x+3}\)
Vậy: \(N=\frac{2x-6}{x+3}\)
Câu 1 : Tìm x :
1. \(A=x^2+4x-2\)
\(A=x^2+2.x.2+2^2-2^2-2\)
\(A=\left(x^2+4x+2^2\right)-4-2\)
\(A=\left(x+2\right)^2-6\)
\(\left(x+2\right)^2-6\ge-6\)
MIn A= -6 khi \(\left(x+2\right)^2=0\)
=> \(x+2=0hayx=-2\)
Vậy x=2
những câu tiếp theo làm tg tự như thế nhé
Câu 1:
a) Ta có: \(A=x^2+4x-2\)
\(=x^2+4x+4-6\)
\(=\left(x+2\right)^2-6\)
Ta có: \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2-6\ge-6\forall x\)
Dấu '=' xảy ra khi
\(\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy: x=-2
b) Ta có: \(B=2x^2-4x+3\)
\(=2\left(x^2-2x+\frac{3}{2}\right)\)
\(=2\left(x^2-2\cdot x\cdot1+1+\frac{1}{2}\right)\)
\(=2\left[\left(x^2-2x\cdot1+1\right)+\frac{1}{2}\right]\)
\(=2\left[\left(x-1\right)^2+\frac{1}{2}\right]\)
\(=2\left(x-1\right)^2+1\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-1\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi
\(2\left(x-1\right)^2=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy: x=1
c) Ta có: \(C=x^2+y^2-4x+2y+5\)
\(=x^2-4x+4+y^2+2y+1\)
\(=\left(x^2-4x+4\right)+\left(y^2+2y+1\right)\)
\(=\left(x-2\right)^2+\left(y+1\right)^2\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\left(y+1\right)^2\ge0\forall y\)
Do đó: \(\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Vậy: x=2 và y=-1
Câu 2:
a) Ta có: \(A=-x^2+6x+5\)
\(=-\left(x^2-6x-5\right)\)
\(=-\left(x^2-6x+9-14\right)\)
\(=-\left[\left(x^2-6x+9\right)-14\right]\)
\(=-\left[\left(x-3\right)^2-14\right]\)
\(=-\left(x-3\right)^2+14\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2+14\le14\forall x\)
Dấu '=' xảy ra khi
\(-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy: GTLN của đa thức \(A=-x^2+6x+5\) là 14 khi x=3
b) Ta có: \(B=-4x^2-9y^2-4x+6y+3\)
\(=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(4x^2+4x+1\right)+\left(9y^2-6y+1\right)-5\right]\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2-5\right]\)
\(=-\left(2x+1\right)^2-\left(3y-1\right)^2+5\)
Ta có: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Rightarrow-\left(2x+1\right)^2\le0\forall x\)(1)
Ta có: \(\left(3y-1\right)^2\ge0\forall y\)
\(\Rightarrow-\left(3y-1\right)^2\le0\forall y\)(2)
Từ (1) và (2) suy ra
\(-\left(2x+1\right)^2-\left(3y-1\right)^2\le0\forall x,y\)
\(\Rightarrow-\left(2x+1\right)^2-\left(3y-1\right)^2+5\le5\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}-\left(2x+1\right)^2=0\\-\left(3y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\\left(3y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\3y-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x=-1\\3y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)
Vậy: GTLN của đa thức \(B=-4x^2-9y^2-4x+6y+3\) là 5 khi và chỉ khi \(x=\frac{-1}{2}\) và \(y=\frac{1}{3}\)
Câu 3:
a) Ta có: \(x^2+y^2-2x+4y+5=0\)
\(\Rightarrow x^2-2x+1+y^2+4y+4=0\)
\(\Rightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy: x=1 và y=-2
b) Ta có: \(5x^2+9y^2-12xy-6x+9=0\)
\(\Rightarrow x^2+4x^2+9y^2-12xy-6x+9=0\)
\(\Rightarrow\left(4x^2+12xy+9y^2\right)+\left(x^2-6x+9\right)=0\)
\(\Rightarrow\left(2x+3y\right)^2+\left(x-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+3y\right)^2=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3y=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2\cdot3+3y=0\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}6+3y=0\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3y=-6\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=3\end{matrix}\right.\)
Vậy: x=3 và y=-2
a.) \(A=x^2+y^2+1+2xy+2x+2y=\left(x+y+1\right)^2.\)
b.) \(B=u^2+v^2+2u+2v+2\left(u+1\right)\left(v+1\right)+2=u^2+2u+1+2\left(u+1\right)\left(v+1\right)+v^2+2v+1\)
\(B=\left(u+1\right)^2+2\left(u+1\right)\left(v+1\right)+\left(v+1\right)^2=\left(u+1+v+1\right)^2=\left(u+v+2\right)^2\)
Giả sử số tự nhiên a chia cho 7 dư 3. CMR a chia cho 7 dư 2
u^2v^2(u+v)^2-(u^2v+uv^2)^2 - Step-by-Step Calculator - Symbolab
Tham khảo ở đó nhé!
1. \(3x\left(x^2+2y\right)^2-12xy\left(x^2+y\right)\)\(=3x\left(x^4+4x^2y+4y^2\right)-12x^3y-12xy^2\)
\(=3x^5+12x^3y+12xy^2-12x^3y-12xy^2=3x^5\)
2. \(u^2v^2\left(u+v\right)^2-\left(u^2v+uv^2\right)^2\)
\(=u^2v^2\left(u^2+2uv+v^2\right)-\left(u^4v^2+2u^3v^3+u^2v^4\right)\)
\(=u^4v^2+2u^3v^3+u^2v^4-u^4v^2-2u^3v^3-u^2v^4=0\)