K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2018

Bài này là bài của lớp 9 nha!! có chỗ nào ko hiểu ib

\(a,A=\sqrt{18}+\sqrt{50}-\frac{1}{2}\sqrt{98}.\)

\(=3\sqrt{2}+5\sqrt{2}-\frac{7}{2}\sqrt{2}\)

\(=\sqrt{2}\left(3+5-\frac{7}{2}\right)\)

\(=\frac{9}{2}\sqrt{2}\)

\(b,B=\left(2\sqrt{3}+7\right)\left(2\sqrt{3}-7\right)\)

\(=2^2\sqrt{3^2}-7^2\)

\(=12-49=-37\)

12 tháng 11 2018

a ) 

\(A=\sqrt{18}+\sqrt{50}-\frac{1}{2}\sqrt{98}\)

\(A=3\sqrt{2}+5\sqrt{2}-\frac{7}{2}\sqrt{2}\)

\(A=(3+5-\frac{7}{2})\sqrt{2}\)

\(A=\frac{9}{2}\sqrt{2}=\frac{9\sqrt{2}}{2}\)

b)

\(B=\left(2\sqrt{3}+7\right)\left(2\sqrt{3}-7\right)=\left(2\sqrt{3}\right)^2-7^2=12-49=-37\)

4 tháng 8 2016

pn lấy đề ở đâu vậy ?

5 tháng 8 2016

Ở lớp học thêm c ạ

15 tháng 2 2020

a)

\((\sqrt2- \sqrt3).(\sqrt2+\sqrt3)\)

=\(\sqrt2.\sqrt2 + \sqrt2.\sqrt3-\sqrt3.\sqrt2+\sqrt3.\sqrt3\)

=\(1.1+1.\sqrt3-\sqrt3.1+\sqrt3.\sqrt3\)

=1+0+3=4

15 tháng 2 2020

\(a,\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)=\left(\sqrt{2}\right)^2-\left(\sqrt{3}\right)^2=2-3=-1\)

\(b,-\left(\sqrt{2}\right)^4+\left(\sqrt{3}\right)^6=-\left(\sqrt{2}^2\right)^2+\left(\sqrt{3}^2\right)^3=-2^2+3^3=-4+27=23\)

\(c,A=\frac{1}{1-\frac{1}{1-2^{-4}}}+\frac{1}{1+\frac{1}{1+2^{-1}}}=\frac{1}{1-\frac{1}{1-\frac{1}{16}}}+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}=\frac{1}{1-\frac{1}{\frac{15}{16}}}+\frac{1}{1+\frac{1}{\frac{3}{2}}}\)

\(=\frac{1}{1-\frac{16}{15}}+\frac{1}{1+\frac{2}{3}}=\frac{1}{-\frac{1}{15}}+\frac{1}{\frac{5}{3}}=-15+\frac{3}{5}=-14,4\)

\(d,B=9+99+...+99...9=\left(10-1\right)+\left(100-1\right)+...+\left(100...0-1\right)\)

\(=\left(10+100+...+100...0\right)-\left(1+1+...+1\right)=11...10-50=11...1060\)(có 48 chữ số 1)

21 tháng 10 2018

a) = \(\frac{7}{2}\)

b) = \(\frac{643}{64}\)

c) = 0

21 tháng 7 2016

Câu a)
\(A=\sqrt{20+1}+\sqrt{40+2}+\sqrt{60+3}\)
\(=\sqrt{1\left(20+1\right)}+\sqrt{2\left(20+1\right)}+\sqrt{3\left(20+1\right)}\)
\(=\sqrt{20+1}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)

\(B=\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{20}+\sqrt{40}+\sqrt{60}\)
\(=1\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)+\left(\sqrt{1}\cdot\sqrt{20}+\sqrt{2}\cdot\sqrt{20}+\sqrt{3}\cdot\sqrt{20}\right)\)
\(=\sqrt{1}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)+\sqrt{20}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)
\(=\left(\sqrt{20}+\sqrt{1}\right)\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)

Ta thấy: \(\hept{\begin{cases}\left(\sqrt{20+1}\right)^2=20+1\\\left(\sqrt{20}+\sqrt{1}\right)^2=20+1+2\sqrt{20}\end{cases}}\)
\(\Rightarrow\left(\sqrt{20+1}\right)^2< \left(\sqrt{20}+\sqrt{1}\right)^2\Rightarrow\sqrt{20+1}< \sqrt{20}+\sqrt{1}\)
Vậy A < B.

21 tháng 7 2016

a) A<B

5 tháng 11 2017

b, \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)

.............................................

Cộng với vế 99 của BĐT trên, ta được:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}>99.\frac{1}{10}=\frac{99}{10}\)

\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}>\frac{99}{10}=\frac{1}{10}=\frac{100}{10}=10\)

25 tháng 11 2017

Wrecking Ball đã làm đúng

to ra kết quả giống cậu : Wrecking Ball

là đáp án đúng

tk nha ( chúc bn học gioi )

16 tháng 12 2017

b, \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)

Ta có: \(1< 100\Rightarrow\sqrt{1}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{1}}< \frac{1}{\sqrt{100}}\)

           \(2< 100\Rightarrow\sqrt{2}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{2}}< \frac{1}{\sqrt{100}}\)

          \(3< 100\Rightarrow\sqrt{3}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{3}}< \frac{1}{\sqrt{100}}\)

           ______________________________________________

          \(100=100\Rightarrow\sqrt{100}=\sqrt{100}\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\left(1\right)\)

Từ (1) suy ra:

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\left(100sh\frac{1}{\sqrt{100}}\right)\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}.100\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{10}{\sqrt{100}}\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>10\left(ĐPCM\right)\)