K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2015

gt <=>(x^2+2)(y+1)=9 hoặc -9

TH1:(x^2+2)(y+1)=9

Mà x,y là số nguyên =>x^2+2,y+1 thuộc Ư(9) 

x^2+2,y+1 thuộc Ư(-3;3) 

Mà x^2+2>=2>0 với mọi x

=>x^2+2=3<=>x=1 hoặc -1

Mà x dương =>x=1

y+1=3<=>y=2

TH2:

TH1:(x^2+2)(y+1)=-9

Mà x,y là số nguyên =>x^2+2,y+1 dương

(x^2+2)(y+1)>0 => điều vô lí

Vậy:...

16 tháng 8 2015

|(x2 + 2). (y + 1)| = 9 => |(x2 + 2)|.|y + 1| =  9  => (x+ 2).|y + 1| = 9 

=> x+ 2 \(\in\) Ư(9) = {-9; -3; -1; 1; 3; 9}

Vì x+ 2 > 0 + 2 = 2 với x nguyên dương => x+ 2 = 3 hoặc x2 + 2 = 9 

+) x2 + 2 = 9 => x= 7 ( Loại)

+) x+ 2 = 3 => x2 = 1 và |y + 1| = 3

x2 = 1 => x = 1 ( Vì x > 0)

|y +1| = 3 => y + 1 = 3 hoặc y + 1 = -3 => y = 2 (Chọn ) hoặc y = -4 ( Loại)

Vậy (x; y) = (1; 2)

27 tháng 3 2020

Gọi ước chung lớn nhất của x - z và y - z là d ( d \(\in\)\(ℕ^∗\))

\(\Rightarrow\hept{\begin{cases}x-z⋮d\\y-z⋮d\end{cases}}\)

\(\Rightarrow\left(x-z\right).\left(y-z\right)⋮d^2\)

\(\Rightarrow z^2⋮d^2\Rightarrow z⋮d\)

\(\Rightarrow\hept{\begin{cases}x⋮d\\y⋮d\end{cases}}\)

Mà x, y nguyên tố cùng nhau \(\Rightarrow d=1\)

\(\Rightarrow\)\(\left(x-z,y-z\right)=1\)

Mà (x-z)(y-z)=z^2 chính phương

x,y,z thuộc N*

\(\Rightarrow x-z\)và \(y-z\)đều là số chính phương

\(\Rightarrow\hept{\begin{cases}x-z=m^2\\y-z=n^2\end{cases}}\)

với m,n thuộc Z

\(\Rightarrow\left(x-z\right)\left(y-z\right)=z^2=m^2n^2\)

\(\Rightarrow z=mn\)

Ta có: (x-z)+(y-z)=(x+y)-2z

\(\Rightarrow\left(x+y\right)=m^2+n^2+2mn\)

\(\Rightarrow x+y=\left(m+n\right)^2\)

Mặt khác: \(\left(x-z\right)\left(y-z\right)=z^2\)

\(\Rightarrow xy-zy-zx+z^2=z^2\Rightarrow xy-zy-zx=0\)\(\Rightarrow xy-z\left(x+y\right)=0\Rightarrow xy=z\left(x+y\right)\)

\(\Rightarrow xyz=z^2\left(x+y\right)=z^2\left(m+n\right)^2\)là số chính phương với z thuộc N*, m,n thuộc Z (đpcm)

Vậy xyz là số chính phương.

16 tháng 8 2020

xyz là số chính phương

4 tháng 4 2016

Sao ko thay cau tra loi cua may ban trc vay

27 tháng 3 2020

Gọi ước chung lớn nhất của x - z và y - z là d ( d \(\in\)\(ℕ^∗\))

\(\Rightarrow\hept{\begin{cases}x-z⋮d\\y-z⋮d\end{cases}}\)

\(\Rightarrow\left(x-z\right).\left(y-z\right)⋮d^2\)

\(\Rightarrow z^2⋮d^2\Rightarrow z⋮d\)

\(\Rightarrow\hept{\begin{cases}x⋮d\\y⋮d\end{cases}}\)

Mà x, y nguyên tố cùng nhau \(\Rightarrow d=1\)

\(\Rightarrow\)\(\left(x-z,y-z\right)=1\)

Mà (x-z)(y-z)=z^2 chính phương

x,y,z thuộc N*

\(\Rightarrow x-z\)và \(y-z\)đều là số chính phương

\(\Rightarrow\hept{\begin{cases}x-z=m^2\\y-z=n^2\end{cases}}\)

với m,n thuộc Z

\(\Rightarrow\left(x-z\right)\left(y-z\right)=z^2=m^2n^2\)

\(\Rightarrow z=mn\)

Ta có: (x-z)+(y-z)=(x+y)-2z

\(\Rightarrow\left(x+y\right)=m^2+n^2+2mn\)

\(\Rightarrow x+y=\left(m+n\right)^2\)

Mặt khác: \(\left(x-z\right)\left(y-z\right)=z^2\)

\(\Rightarrow xy-zy-zx+z^2=z^2\Rightarrow xy-zy-zx=0\)\(\Rightarrow xy-z\left(x+y\right)=0\Rightarrow xy=z\left(x+y\right)\)

\(\Rightarrow xyz=z^2\left(x+y\right)=z^2\left(m+n\right)^2\)là số chính phương với z thuộc N*, m,n thuộc Z (đpcm)

Vậy xyz là số chính phương.

12 tháng 7 2017

Ta có:

x2+y2=13=9+4=4+9=32+22=22+32

=> Các cặp số x, y nguyên dương thỏa mãn là:

\(\hept{\begin{cases}x=3\\y=2\end{cases}}\) và  \(\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Xét điểm M(a;b) bất kì nằm trog ( tính cả biên ) của hình tròn ( \(C_n\)) : \(x^2+y^2\le n^2\)

Mỗi điểm M như vậy tương ứng với 1 và chỉ 1 hình vuông đơn vị S(M) mà M là đỉnh ở goc trái , phía dưới 

Từ đó suy ra \(S_n\)= số hình vuông S (M) = tổng diện tích của S(M) với \(M\in\left(C_n\right)\)

Rõ ràng các hình vuông S(M) , với \(M\in\left(C_{ }_n\right)\)đều nằm trog hình tròn \(\left(C_{n+\sqrt{2}}\right):x^2+y^2\le\left(n+\sqrt{2}\right)^2\)

Do đó : \(S_n\le\pi\left(n+\sqrt{2}\right)^2\)(1) 

Tương tự như vậy , ta thấy các hình vuông S(M) , với \(M\in\left(C_n\right)\)phủ kín hình tròn

\(\left(C_{n-\sqrt{2}}\right):x^2+y^2\le\left(n-\sqrt{2}\right)^2\)vì thế \(S_n\ge\pi\left(n-\sqrt{2}\right)^2\)(2)

Từ (1) và (2) suy ra \(\sqrt{\pi}\left(n-\sqrt{2}\right)\le\sqrt{S_n}\le\sqrt{\pi}\left(n+\sqrt{2}\right)\)

suy ra \(\sqrt{\pi}\left(1-\frac{\sqrt{2}}{n}\right)\le\frac{\sqrt{S_n}}{n}\le\sqrt{\pi}\left(1+\frac{\sqrt{2}}{n}\right)\)

Mà lim \(\sqrt{\pi}\left(1-\frac{\sqrt{2}}{n}\right)\)= lim\(\sqrt{\pi}\left(1+\frac{\sqrt{2}}{n}\right)=\sqrt{\pi}\)nên lim \(\sqrt{\frac{S_n}{n}}=\sqrt{\pi}\)

31 tháng 12 2019

@ Huy @ Bài làm đánh đẹp lắm. Nhưng cô cũng không hiểu được rõ  ràng là toán 6 sao có lim, phương trình đường tròn;...                      ( lớp 11 , 12 ) ở đây.

 Lần sau chú ý giải Toán 6 không cần dùng kiến thức quá cao nhé.

Tuy nhiên đề bài bạn thiếu. Lần sau em có thể sửa lại đề bài trước rồi hẵng làm nha.