K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2018

Nếu đề bài là giải phương trình thì :

\(\sqrt{x+3}=\sqrt{x-3}\)

Đk : \(x\ge3\)

Bình phương hai vế :

\(\Rightarrow x+3=x-3\)

\(x+3-x+3=0\)

\(0x=-6\)

\(\Rightarrow\)phương trình vô nghiệm

17 tháng 7 2023

\(P=\sqrt[]{x}+\dfrac{3}{\sqrt[]{x}-1}\left(x>1\right)\)

\(P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\)

Áp dụng bất đẳng thức Cauchy cho 2 số \(\sqrt[]{x}-1;\dfrac{3}{\sqrt[]{x}-1}\) ta được :

\(\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{\sqrt[]{x}-1.\dfrac{3}{\sqrt[]{x}-1}}\)

\(\Rightarrow\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{3}\)

\(\Rightarrow P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\ge2\sqrt[]{3}+1\)

\(\Rightarrow Min\left(P\right)=2\sqrt[]{3}+1\)

17 tháng 7 2023

sorry mn cho e sửa lại đề ạ

tìm gtln của p ạ

 

20 tháng 9 2019

là giải pt nha m.n

20 tháng 9 2019

dễ mà bạn

3 tháng 9 2016

1. \(\sqrt{x^2+2x+3}=\sqrt{\left(x+1\right)^2+2}>0\)

=> Biểu thức luôn luôn có nghĩa với mọi x

2. \(\sqrt{x^2-2x+2}=\sqrt{\left(x-1\right)^2+1}>0\)

=> Biểu thức luôn luôn có nghĩa với mọi x

3. \(\sqrt{x^2+2x-3}=\sqrt{\left(x+1\right)^2-4}\)

\(\Rightarrow DK:\left(x+1\right)^2\ge4\)

4. \(\sqrt{2x^2+5x+3}=\sqrt{\left(\sqrt{2}x+\frac{5\sqrt{2}}{4}\right)^2-\frac{1}{8}}\)

 \(\Rightarrow DK:\left(\sqrt{2}x+\frac{5\sqrt{2}}{4}\right)^2\ge\frac{1}{8}\)

K biết đúng k.. Sai thôi

3 tháng 9 2016

1)    tc :     x+ 2x +3  =   x2 + 2x + 1 + 2   =   (x+1)2 +2 > 0 vs mọi x

     => căn thức có nghĩa vs mọi x

2)    tương tự câu 1:   x2 - 2x + 2  =  (x-1)2 +1   >    0   vs mọi x

        => căn thức có nghĩa vs mọi x

3)    \(\sqrt{x^2+2x-3}\)có nghĩa    <=>  x2+2x-3\(\ge0\)

                                                          <=> (x+1)2 - 4 \(\ge0\)

                                                        <=> (x+1)2 \(\ge4\)

                                                         <=> x+1 \(\ge2\)

                                                         <=> x \(\ge1\)

4) \(\sqrt{2x^2+5x+3}\)có nghĩa   <=>  2x2 +5x +3 \(\ge0\)

                                                      <=> 2x2 + 2x + 3x + 3 \(\ge0\)

                                                      <=> (2x+3)(x+1) \(\ge0\)

                                                       <=>\(\hept{\begin{cases}2x+3\ge0\\x+1\ge0\end{cases}}\)  hoặc    \(\hept{\begin{cases}2x+3\le0\\x+1\le0\end{cases}}\)

                                                     <=>  \(\hept{\begin{cases}x\ge\frac{-3}{2}\\x\ge-1\end{cases}}\)        hoặc   \(\hept{\begin{cases}x\le\frac{-3}{2}\\x\le-1\end{cases}}\)

                                                    <=>   \(\frac{-3}{2}\le x\le-1\)

4 tháng 11 2016

Hàm số đồng biến trên R khi và chỉ khi

m3 - 2m2 - 5m + 6 > 0

<=> (m + 2)(m - 1)(m - 3) > 0

<=> \(\orbr{\begin{cases}-2< m< 1\\m>3\end{cases}}\)

Hàm số nghịch biến trên R khi và chỉ khi

m3 - 2m2 - 5m + 6 < 0

<=> (m + 2)(m - 1)(m - 3) < 0

<=> \(\orbr{\begin{cases}m< -2\\1< m< 3\end{cases}}\)

4 tháng 11 2016

thanks pạn nhìu ạ 

6 tháng 8 2017

1)x^4+x^2-6x+1=0>>>x^4+4x^2+4-3x^2-6x-3=0>>>(x^2+2)^2=3(x-1)^2.

>>Sau đó giải bt.

2)Đặt x^2-x+1=a;x+1=b thì:x^3+1=ab.

Pt:2a+5b^2+14ab=0(tự giải nha)

9 tháng 8 2017

PP chung ở cả 3 câu,nói ngắn gọn nhé:

Chứng mình x khác 0,hay nói cách khác x=0 không là nghiệm của phương trình.

Chia cả tử và mẫu cho x ,rồi giải bình thường bằng cách đặt ẩn phụ.

Vd ở câu a>>>4/(4x-8+7/x)+3/(4x-10+7/x)=1.Sau đó đặt 4x+7/x=a>>>4/(a-8)+3/(a-10)=1>>>giải bình thường,các câu sau tương tự