Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge\frac{2}{3}\)
\(\sqrt{x+3}-\sqrt{2x-1}=\sqrt{3x-2}\)
\(\Leftrightarrow\sqrt{x+3}=\sqrt{2x-1}+\sqrt{3x-2}\)
\(\Leftrightarrow x+3=2x-1+3x-2+2\sqrt{\left(2x-1\right)\left(3x-2\right)}\)
\(\Leftrightarrow3-2x=\sqrt{\left(2x-1\right)\left(3x-2\right)}\) (\(x\le\frac{3}{2}\))
\(\Leftrightarrow\left(3-2x\right)^2=\left(2x-1\right)\left(3x-2\right)\)
\(\Leftrightarrow4x^2-12x+9=6x^2-7x+2\)
\(\Leftrightarrow2x^2+5x-7=0\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{7}{2}< \frac{2}{3}\left(l\right)\end{matrix}\right.\)
ĐKXĐ: \(x\ge-3\)
\(\Leftrightarrow\left(x+1\right)^3+\left(3x^2+6x+3-4\left(x+3\right)\right)\sqrt{x+3}=0\)
Đặt \(\left\{{}\begin{matrix}x+1=a\\\sqrt{x+3}=b\end{matrix}\right.\)
\(\Rightarrow a^3+\left(3a^2-4b^2\right)b=0\)
\(\Leftrightarrow a^3+3a^2b-4b^3=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+2b\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\2b=-a\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=x+1\left(x\ge-1\right)\\2\sqrt{x+3}=-x-1\left(x\le-1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=x^2+2x+1\\4\left(x+3\right)=x^2+2x+1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2-2x-11=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=1-2\sqrt{3}\end{matrix}\right.\)
Em trục căn thức:
\(\sqrt{x+3}-2\sqrt{x}=\sqrt{2x+2}-\sqrt{3x+1}\)
<=> \(\frac{-3x+3}{\sqrt{x+3}+2\sqrt{x}}=\frac{-x+1}{\sqrt{2x+2}+\sqrt{3x+1}}\)
=> nhân tử chung là -x + 1 . Tự làm tiếp nhé!
làm như cô thì vẫn cần phải đánh giá rất khó chịu nhé
\(\sqrt{x+3}-2\sqrt{x}=\sqrt{2x+2}-\sqrt{3x+1}\left(ĐKXĐ:x\ge0\right)\)
\(< =>\sqrt{x+3}-\sqrt{2x+2}+\sqrt{3x+1}-2\sqrt{x}=0\)
\(< =>\frac{\sqrt{x+3}^2-\sqrt{2x+2}^2}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{\sqrt{3x+1}^2-4\sqrt{x}^2}{\sqrt{3x+1}+2\sqrt{x}}=0\)
\(< =>\frac{x+3-2x-2}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{3x+1-4x}{\sqrt{3x+1}+2\sqrt{x}}=0\)
\(< =>\frac{1-x}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{1-x}{\sqrt{3x+1}+2\sqrt{x}}=0\)
\(< =>\left(1-x\right)\left(\frac{1}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{1}{\sqrt{3x+1}+2\sqrt{x}}\right)=0< =>x=1\)
đề k rõ sao tl đc bạn??