K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2017

gọi số đó là : 10a+b

ta có : \(\sqrt{10a+b}\)= a+\(\sqrt{b}\)

Để \(\sqrt{10a+b}\) nguyên thì \(\sqrt{b}\) nguyên \(\Leftrightarrow\)

b\(\in\left\{0;1;4;9\right\}\)

ta có : ( \(\sqrt{10a+b}\))2=a2+b +2a.\(\sqrt{b}\)

\(\Rightarrow\) 10a+b=a2+b+2a.\(\sqrt{b}\)

\(\Rightarrow\)a(a-10+2\(\sqrt{b}\))=0

\(\Rightarrow\)\(\left[{}\begin{matrix}a=0\left(loai\right)\\a+2\sqrt{b}-10=0\end{matrix}\right.\)

Th2 : a+2.\(\sqrt{b}\)-10 = 0\(\Rightarrow\) a=10-2.\(\sqrt{b}\).Xét tất cả các trường hợp b=1;4;9 thì tìm được các giá trị thỏa mãn là a=8;6 ; 4

19 tháng 2 2016

Gọi số đó là 10a+b (a, b nguyên; 0<a<10; 0<=b<10) 
Khi đó: √(10a+b) = a + √b 
Để √(10a+b) nguyên thì √b nguyên <=> b = 1 hoặc 4 hoặc 9 
Bình phương hai vế => a^2 - (10-2√b)a = 0 
<=> a(a-10+2√b) = 0 
@1: a = 0 (loại) 
@2: a-10+2√b = 0 <=> a = 10-2√b 
+) b = 1 <=> a = 8 => 81 thỏa mãn 
+) b = 4 <=> a = 6 => 64 thỏa mãn 
+) b = 9 <=> a = 4 => 49 thỏa mãn 
Kết luận: ...

5 tháng 3 2020

a,

x^2=\(\left(999...9\right)^2=\left(10^{2017}-1\right)^2=9999...8000...1\)  (2016 chu so 9 va 0)

xy=\(999...9.888...8=111...0888...89\) (2016 chu so 1 va 8)

ta thay tong cac chu so cua xy, x^2 deu la 2017.9 nen bang nhau

neu bn thac mac lam sao co cong thuc tren thi bn co the chung minh dua vao \(999...9=10^n-1\) (n chu so 9)

5 tháng 3 2020

b, sau luot thu nhat tren bang se xuat hien 3 so la 2,3,2 ( 2 so chan va 1 so le)

Ta co  nhan xet rang 

chan + chan-1 = le

le+chan -1 = chan

tu nhan xet nay ta thay ke tu luot thu 2 bat ke ta chon so nao 2 hoac 3 ( noi tong quat hon la 1 so chan hoac 1 so le ) thi ket qua nhan duoc la ta dc 3 so moi trong do co 2 so chan va 1 so le

Ma de bai cho 27,1985,2017 deu la 3 so le nen KHONG the nhan duoc ket qua nay neu bat dau tu 3 so  2,2,2

Chuc ban hoc tot 

P/s Mik giai thich co cho nao kho hieu mong mn thong cam

13 tháng 3 2020

Bạn tham khảo nha :

https://olm.vn/hoi-dap/detail/57202292544.html

Hok tốt !

13 tháng 3 2020

Tham khảo link này: https://olm.vn/hoi-dap/detail/57202292544.html

NV
18 tháng 9 2021

Giả sử \(n=a^2+b^2\) và \(m=c^2+d^2\)

\(\Rightarrow n.m=\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)

\(=\left(a^2c^2+b^2d^2-2abcd\right)+\left(a^2d^2+b^2c^2+2abcd\right)\)

\(=\left(ac-bd\right)^2+\left(ad+bc\right)^2\) là tổng 2 bình phương (đpcm)