K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2015

\(\sqrt{a+b}+\sqrt{a^2-b^2}=\sqrt{a+b}+\sqrt{\left(a+b\right)\left(a-b\right)}\)

\(=\sqrt{a+b}+\sqrt{a+b}.\sqrt{a-b}=\sqrt{a+b}.\left(1+\sqrt{a-b}\right)\)

8 tháng 8 2015

\(12-\sqrt{x}-x=12-4\sqrt{x}+3\sqrt{x}-x=4\left(3-\sqrt{x}\right)+\sqrt{x}\left(3-\sqrt{x}\right)=\left(4+\sqrt{x}\right)\left(3-\sqrt{x}\right)\)

12 tháng 10 2021

\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)

28 tháng 11 2021
Lol .ngudoots
31 tháng 7 2020

(a+b)2(a-b)2-2(a+b)(a-b)

=(a+b)(a-b)(a+b)(a-b)-2(a+b)(a-b)

=(a+b)(a-b)[(a+b)(a-b)-2]

=(a+b)(a-b)(a2-b2-2)

phân tích đa thức thành nhân tử

a^2(b-c)+b^2(c-a)+c^2(a-b)

= -(b-a)(c-a)(c-b)

nha bạn

30 tháng 8 2021

a2(b-c)+b2(c-a)+c2(a-b)

=a2b-a2c+b2c-b2a+c2(a-b)

=(a2b-b2a)-(a2c-b2c)+c2(a-b)

=ab(a-b)+c(a2-b2)+c2(a-b)

=ab(a-b)+c(a-b)(a+b)+c2(a-b)

=(a-b)(ab+ac+bc+c2)

=(a-b)[(ab+bc)+(ac+c2)]

=(a-b)[b(a+c)+c(a+c)]

=(a-b)(a+c)(b+c)

\(=a^2b-a^2c+b^2c-b^2a+c^2a-c^2b\)

\(=\left(a^2b-b^2a\right)-\left(a^2c-b^2c\right)+c^2\left(a-b\right)\)

\(=ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)\)

\(=\left(a-b\right)\left(ab-ca-cb+c^2\right)\)

\(=\left(a-b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)