K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2016

Ta có:\(\frac{a}{b}=\frac{a+c}{b+c}\)

\(\Leftrightarrow a\left(b+c\right)=b\left(a+c\right)\)

\(\Leftrightarrow ab+ac=ab+bc\)

\(\Leftrightarrow ac=bc\)

\(\Leftrightarrow a=b\)

12 tháng 12 2016

Bai nay chac gi da thi hoc ki

12 tháng 12 2016

bạn sai đầu bài rồi ?? sao lại liên quan đến d và e mik chưa hiểu lắm 

12 tháng 12 2016

mik cx ko bt nưa! thầy mik biết như thế mà! 

Mà mik cx ko bt cái chỗ \(\frac{a}{b}\)\(\frac{a+c}{b+c}\) ko bt mik có đúng ko nữa cơ

12 tháng 12 2016

Các bn lm ơn lm nhanh hộ tui dc ko? Tui đag cần rất gấp đó các bn ơi!

4 tháng 10 2018

Cảm ơn mọi người đã tham gia

4 tháng 10 2018

Không nhớ cách làm nữa :)) lớp 7 rồi mà :))

21 tháng 9 2016

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

Ta có:

\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)

\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)

Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)

21 tháng 9 2016

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có : 

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

4 tháng 11 2016

a) Cách 1: Từ điều kiện \(a,b,c,d\) khác nhau và \(a.d=b.c\)

ta suy ra \(a,b,c,d\ne0\)\(\frac{a}{b}=\frac{c}{d}\left(1\right)\).

Cộng vào hai vế của (1) cùng số 1 ta được:

\(\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}.\)

Cách 2: Theo tính chất của tỉ lệ thức, từ (1) suy ra:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{c+d}{d}=\frac{a+b}{b}.\)

b) Giải tương tự câu a) ta có:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1=\frac{a-b}{c}=\frac{c-d}{d}.\)

Hoặc ta có theo tính chất của tỉ lệ thức

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}.\)

4 tháng 11 2016

theo bài ra , ta có :

ad = cd

=>\(\frac{a}{b}=\frac{c}{d}\) ( 1 )

=> \(\frac{a}{b}+1=\frac{c}{d}+1\)

=>\(\frac{a+b}{b}=\frac{c+d}{d}\) (đpcm)

b/ Từ 1 ở phần a ta có:

\(\frac{a}{b}-1=\frac{c}{d}-1\)

=> \(\frac{a-b}{b}=\frac{c-d}{d}\) (đpcm)

9 tháng 10 2019

2Sử dụng t/c dãy tỉ số bằng nhau ta dễ dàng CM tất cả đều = 3

->a+b+2c = 4c -> a+b=2c

Tương tự -> b+c = 2a và a+c=2b

Thay vào M tính được M  = 8abc/abc = 8

9 tháng 10 2019

Mik sửa lại 1 chút, sd t/c dãy tỉ số bằng nhau cm được tất cả =4

30 tháng 9 2016

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

Ta có:

\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)

\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)

Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

30 tháng 9 2016

Đặt \(\frac{a}{b}+\frac{c}{d}=k\) (vì a khác b , c khác d ) 
suy ra a= bk , c=dk 
 Ta có : \(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b.\left(k+1\right)}{b.\left(k-1\right)}=\frac{k+1}{k-1}\)
             \(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d.\left(k+1\right)}{d.\left(k-1\right)}=\frac{k+1}{k-1}\)
Từ (1) và (2) => \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

Ta có : \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\left(1\right)\)  Áp dụng t/c dãy tỉ số bằng nhau, ta có : 

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c-b}{c+a+b}\)

\(=\frac{\left(a+a-a\right)+\left(b+b-b\right)+\left(c+c-c\right)}{a+b+c}=\frac{a+b+c}{a+b+c}=1\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow a=b=c\)

 \(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)+\left(1+\frac{c}{b}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)\)

\(\)\(\Rightarrow B=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=2^3=8\)

Vậy \(B=8\)

áp dụng tính chất dãy tỉ số bằng nhau có

\(\frac{a+b-c}{c}\)=\(\frac{b+c-a}{a}\)=\(\frac{c+a-b}{b}\)=\(\frac{a+b-c+b+c-a+c+a-b}{a+b+c}\)=\(\frac{a+b+c}{a+b+c}\)=1

=>\(\frac{a+b-c}{c}\)=1=>a+b-c=c=>a+b=2c

tương tự ta được b+c=2a, c+a=2b

rồi bạn thay vào B là xong