K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Phương pháp 1: 67,31 \( \pm \)0,96

\(a = 67,31;d = 0,96\)

Sai số tương đối \({\delta _1} \le \frac{d}{{\left| a \right|}} = \frac{{0,96}}{{67,31}} \approx 0,014\)

Phương pháp 2: 67,90 \( \pm \)0,55

\(a = 67,90;d = 0,55\)

Sai số tương đối \({\delta _2} \le \frac{d}{{\left| a \right|}} = \frac{{0,55}}{{67,90}} \approx 8,{1.10^{ - 3}} = 0,0081\)

Phương pháp 3: 67,74 \( \pm \)0,46

\(a = 67,74;d = 0,46\)

Sai số tương đối \({\delta _3} \le \frac{d}{{\left| a \right|}} = \frac{{0,46}}{{67,74}} \approx 6,{8.10^{ - 3}} = 0,0068\)

Ta thấy \(0,014 > 0,0081 > 0,0068\)

=> phương pháp 3 chính xác nhất.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Xét phương pháp 1: ta có d=0,026(tỉ năm);  a=13,807 (tỉ năm)

\({\delta _5} \le \frac{{0,026}}{{\left| {13,807} \right|}} \approx 1,{88.10^{ - 3}} = 0,00188\)

Xét phương pháp 2: ta có d=0,021(tỉ năm);  a=13,799 (tỉ năm)

\({\delta _5} \le \frac{{0,021}}{{\left| {13,799} \right|}} \approx 1,{52.10^{ - 3}} = 0,00152\)

Ta thấy \(0,00188 > 0,00152\) nên phương pháp 2 cho kết quả chính xác hơn.

1. Độ dài các cạnh của một đám vườn hình chữ nhật là x=23 m \(\pm\)0,2m và y = 15 m\(\pm\)0,1m. Tính chu vi và diện tích và sai số tuyệt đối tương ứng. 2. Cho tam giác ABC có độ dài 3 cạnh đo được như sau : a= 12cm \(\pm\)0,2cm ; b = 10,2cm \(\pm\)0,2cm ; c=8cm \(\pm\)0,1cm. Tính chu vi C của tam giác và đánh giá sai số tuyệt đối, sai số tương đối của số gần đúng C tính đó. 3. Đo chiều dài của một con...
Đọc tiếp

1. Độ dài các cạnh của một đám vườn hình chữ nhật là x=23 m \(\pm\)0,2m và y = 15 m\(\pm\)0,1m. Tính chu vi và diện tích và sai số tuyệt đối tương ứng.
2. Cho tam giác ABC có độ dài 3 cạnh đo được như sau : a= 12cm \(\pm\)0,2cm ; b = 10,2cm \(\pm\)0,2cm ; c=8cm \(\pm\)0,1cm. Tính chu vi C của tam giác và đánh giá sai số tuyệt đối, sai số tương đối của số gần đúng C tính đó.
3. Đo chiều dài của một con dốc có kết quả là a= 192,55m , với sai số tương đối ko vượt quá 0,3%. Hãy tìm các chữ số chắc của a và nêu cách viết chuẩn giá trị gần đúng của a ( tức là viết quy tròn )
4. Cho số x =2/7 và các giá trị gần đúng của x là 0,29 ; 0,29 ; 0,86. Hãy xác định sai số tuyệt đối trong từng trường hợp và cho biết giá trị gần đúng nào tốt nhất.
( giải giúp tôi được bài nào thì làm ơn giúp với. Làm ơn đừng giải tắt quá vì tôi ngu nên khó hiểu. Xin cảm ơn! )

0
HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có:  \(\frac{{21}}{{13799}} = 0,0015...\) và \(\frac{{0,1}}{{10,3}} = 0,0097...\)

\( \Rightarrow \frac{{21}}{{13799}} < \frac{{0,1}}{{10,3}}\) hay phép đo ước lượng độ tuổi của vũ trụ có độ chính xác cao hơn.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có:

\(\begin{array}{l}5,4\; - 0,2 < a < 5,4\; + 0,2\;\left( {cm} \right);\;\\7,2 - 0,2 < b < 7,2 + 0,2\;\left( {cm} \right);\\9,7 - 0,1 < c < 9,7 + 0,1\;\left( {cm} \right)\end{array}\)

\(\begin{array}{l} \Rightarrow 5,4 + 7,2 + 9,7\; - 0,5 < a + b + c < 5,4 + 7,2 + 9,7\; + 0,5\;\left( {cm} \right)\\ \Leftrightarrow 22,3\; - 0,5 < a + b + c < 22,3 + 0,5\;\left( {cm} \right)\end{array}\)

Vậy chu vi \(P = a + b + c\) của tam giác đó là \(P = 22,3\;cm \pm 0,5\;cm\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Hàng của chữ số khác 0 đầu tiên bên trái của d = 1000 là hàng nghìn.

Quy tròn a đền hàng chục nghìn ta được 54920000.

b) Hàng của chữ số khác 0 đầu tiên bên trái của d = 0,002 là hàng phần nghìn.

Quy tròn b đền hàng phần trăm ta được 5,79.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Gọi \(\bar a\) là đường kính thực của nhân tế bào.

Vì phép đo đường kính nhân tế bào cho kết quả là \(5 \pm 0,3\mu m\).

=> \(a = 5\mu m;d = 0,3\mu m\)

Nên ta có \(\bar a\) nằm trong đoạn \(\left[ {5 - 0,3;5 + 0,3} \right]\) hay \(\left[ {4,7;5,3} \right]\).

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Mặc dù độ chính xác của khối lượng bao gạo đóng bằng dây chuyền A nhỏ hơn nhưng do bao gạo đóng bằng dây chuyền B nặng hơn nhiều nên ta không dựa vào sai số tuyệt đối để so sánh.

Do đó câu hỏi này ta chưa thể trả lời chính xác được nếu chỉ dựa vào các kiến thức đã học trước đó.

Xem thêm bài Luyện tập 3 trang 76 Sách giáo khoa Toán 10 – Kết nối tri thức với cuộc sống.

ta thấy 1 số chính phương không bao giờ có đuôi là 2;3;7;8

Mà nếu mệnh đề (2) đúng thì n+8=...2 => mệnh đề (1) sai và n-1=...3 => mệnh đề (3) sai

Nhưng chỉ có 1 mệnh đề sai nên chỉ có mệnh đề (2) là thỏa mãn

Vậy n+8 và n+1 là số  chính phương

\(\Rightarrow\left(n+8\right)-\left(n-1\right)=9\)

\(\Leftrightarrow\left(n+8\right)^2-\left(n-1\right)^2=9^2\)

\(\Leftrightarrow\left[\left(n+8\right)-\left(n-1\right)\right]\left[\left(n+8\right)+\left(n-1\right)\right]=9^2\)

\(\Leftrightarrow9\left(2n+7\right)=9^2\)

\(\Leftrightarrow2n-7=9\)

\(\Leftrightarrow n=8\)

Vậy n=8 thì mới thỏa mãn mệnh đề (1) và (3)

                                                  

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Lớp A:

Trung bình cộng lớp A: \(\overline {{X_A}}  = \frac{{148}}{{25}} = 5,92\)

Bảng tần số:

Điểm

2

3

4

5

6

7

8

9

Số HS

2

2

2

5

2

6

3

3

Do n=25 nên trung vị: số thứ 13

 

Do 2+2+2+5+2=13

=> Trung vị là 6.

Mốt là 7 do 7 có tần số là 6 (cao nhất)

Lớp B:

Trung bình cộng lớp B: \(\overline {{X_B}}  = \frac{{157}}{{25}} = 6,28\)

Bảng tần số:

Điểm

3

4

5

6

7

8

9

10

Số HS

2

2

4

5

7

2

2

1

Do n=25 nên trung vị: số thứ 13

Do 2+2+4+5=13

=> Trung vị là 6.

Mốt là 7 do 7 có tần số là 7 (cao nhất)

Trừ số trung bình ra thì trung vị và mốt của cả hai mẫu số liệu đều như nhau

=> Hai phương pháp học tập hiệu quả như nhau.