K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2019

Bạn thiếu 1 TH nha !

Thay x=-2015 vào bt ,ta được :

\(\left(x-1\right)^2=2016\left|x-1\right|\)

\(\Rightarrow2016^2=2016\left|x-1\right|\)

\(\Rightarrow\left|x-1\right|=2016\)

\(\Rightarrow TH1:x-1=2016\Rightarrow x=2017\)

\(TH2:x-1=-2016\Rightarrow x=-2015\)

Vậy \(x\in\left\{2017;-2015\right\}\)

27 tháng 8 2016

Ta có (x + |x| + 2016)(y + |y| + 2016) > 2016 với mọi x, y nên không thể tính được P

20 tháng 9 2016

x+y =0

=> P = 1

10 tháng 9 2016

Đặt \(t=\left|x-1\right|,t\ge0\)

Suy ra pt trở thành : \(t^2+t-2016=0\)

Xét \(\Delta=1^2-4.\left(-2016\right)=8065\)

\(\Rightarrow\begin{cases}t_1=\frac{-1-\sqrt{8065}}{2}\left(\text{loại}\right)\\t_2=\frac{-1+\sqrt{8065}}{2}\left(\text{nhận}\right)\end{cases}\)

Ta có \(\left|x-1\right|=\frac{-1+\sqrt{8065}}{2}\)

+ Nếu \(x\ge1\) thì \(x-1=\frac{-1+\sqrt{8065}}{2}\Rightarrow x=\frac{1+\sqrt{8065}}{2}\)(tm)

+ Nếu x < 1 thì \(1-x=\frac{-1+\sqrt{8065}}{2}\Rightarrow x=\frac{3-\sqrt{8065}}{2}\) (tm)

11 tháng 9 2016

Chị có các làm khác k? e chưa học delta

15 tháng 10 2016

Từ giả thiết ta có \(2016=x^2y^2+1+x^2+y^2+x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

\(\Leftrightarrow x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2015\)

Ta có \(S^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

\(=x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2015\)

\(\Rightarrow S=\sqrt{2015}\) (Vì S > 0)

30 tháng 1 2019

2/ \(3\sqrt[3]{\left(x+y\right)^4\left(y+z\right)^4\left(z+x\right)^4}=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\ge6\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{xyz}\)

\(\ge6.\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\sqrt[3]{xyz}\)

\(\ge\frac{16}{3}\left(x+y+z\right)3\sqrt[3]{x^2y^2z^2}\sqrt[3]{xyz}=16xyz\left(x+y+z\right)\)

30 tháng 1 2019

3/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-x}\le\sqrt{x}\\2\sqrt{xy-x}+\sqrt{x}=1\end{cases}}\)

Dễ thấy

 \(\hept{\begin{cases}0\le x\le1\\y\ge1\end{cases}}\)

Từ phương trình đầu ta có:

\(\sqrt{x}-\sqrt{xy}\ge\sqrt{1-x}\ge0\)

\(\Leftrightarrow y\le1\)

Vậy \(x=y=1\)

14 tháng 10 2016

Bạn thêm điều kiện x,y,z lớn hơn 0 nhé :)

Từ giả thiết ta suy ra : \(a^2=b+4032\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2+4032\)

\(\Rightarrow xy+yz+zx=2016\)thay vào :

\(x\sqrt{\frac{\left(2016+y^2\right)\left(2016+z^2\right)}{2016+x^2}}=x\sqrt{\frac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{x^2+xy+yz+zx}}\)

\(=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(z+y\right)\left(z+x\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=x\left|y+z\right|=xy+xz\)vì x,y,z > 0

Tương tự : \(y\sqrt{\frac{\left(2016+z^2\right)\left(2016+x^2\right)}{2016+y^2}}=xy+zy\)

\(z\sqrt{\frac{\left(2016+x^2\right)\left(2016+y^2\right)}{2016+z^2}}=zx+zy\)

Suy ra \(P=2\left(xy+yz+zx\right)=2.2016=4032\)

5 tháng 3 2017

Nhân cả 2 vế của pt đầu với \(x-\sqrt{x^2+2013}\) được:

\(y+\sqrt{y^2+2013}=\sqrt{x^2+2013}-x\)

\(\Rightarrow x+y=\sqrt{x^2+2013}-\sqrt{y^2+3}\left(1\right)\)

Tương tự nhân 2 vế pt đầu với \(y-\sqrt{y^2+2013}\) được:

\(x+y=\sqrt{y^2+2013}-\sqrt{x^2+2013}\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) ta có: \(2\left(x+y\right)=0\Rightarrow x+y=0\)

5 tháng 3 2017

huhu ko ai giúp mình à @@