Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài thơ về tính diện tích hình thang
Muốn tính diện tích hình thang
Đáy lớn đáy nhỏ ta mang cộng vào
Rồi đem nhân với chiều cao
Chia đôi kết quả thế nào cũng ra.
Muốn tính diện tích hình thang
Đáy lớn đáy bé ta đem cộng vào
Cộng vào nhân với chiều cao
Chia hai lấy nửa thế nào cũng ra .
1/ CÔNG THỨC TÍNH HÌNH VUÔNG
+ Hình vuông là tứ giác có bốn góc vuông và có bốn cạnh bằng nhau
Chu vi hình vuông
Chu vi hình vuông bằng tổng độ dài 4 cạnh hay nói cách khác chu vi hình vuông bằng 4 lần độ dài một cạnh của hình vuông.
P = a x 4 (trong đó a là độ dài cạnh)
Diện tích hình vuông
Muốn tính diện tích hình vuông, ta lấy số đo một cạnh nhân với chính nó.
S = a x a (trong đó a là độ dài cạnh)
Tham khảo thêm: Công thức tính diện tích hình vuông, chu vi hình vuông
2/ CÔNG THỨC TÍNH HÌNH CHỮ NHẬT
+ Hình chữ nhật trong là một hình tứ giác có bốn góc vuông.
Chu vi hình chữ nhật
Chu vi hình chữ nhật bằng hai lần tổng chiều dài và chiều rộng của hình chữ nhật đó (cùng đơn vị đo)
P = (a + b) x 2 (trong đó a và b lần lượt là chiều dài và chiều rộng của hình chữ nhật)
Diện tích hình chữ nhật
Diện tích hình chữ nhật bằng tích chiều dài nhân với chiều rộng (cùng đơn vị đo)
S = a x b (trong đó a và b lần lượt là chiều dài và chiều rộng của hình chữ nhật)
Tham khảo thêm: Công thức tính chu vi hình chữ nhật và diện tích hình chữ nhật
3/ CÔNG THỨC TÍNH HÌNH BÌNH HÀNH
+ Hình bình hành là một hình tứ giác được tạo thành khi hai cặp đường thẳng song song và bằng nhau cắt nhau.
Chu vi hình bình hành
Chu vi hình bình hành bằng hai lần tổng một cặp cạnh kề nhau bất kỳ. Nói cách khác, chu vi hình bình hành là tổng độ dài của 4 cạnh hình bình hành.
P = a + b + a + b = (a + b) x 2 (trong đó a và b là độ dài hai cạnh của hình bình hành)
Diện tích hình bình hành
Diện tích hình bình hành bằng cạnh đáy nhân với chiều cao
S = a x h (trong đó a là độ dài cạnh, h là chiều cao kẻ từ cạnh đó)
Tham khảo thêm: Công thức tính chu vi hình bình hành, diện tích hình bình hành
4/ CÔNG THỨC TÍNH HÌNH THOI
+ Hình thoi là tứ giác có bốn cạnh bằng nhau.
Chu vi hình thoi
Chu vi hình thoi bằng tổng độ dài các cạnh cộng lại với nhau hoặc độ dài một cạnh nhân với 4.
P = a x 4 (trong đó a là độ dài cạnh hình thoi)
Diện tích hình thoi
Diện tích của hình thoi bằng một nửa tích hai đường chéo của hình thoi hoặc bằng tích của chiều cao với cạnh đáy tương ứng
S = (m x n) : 2 (m: đường chéo thứ nhất, n: đường chéo thứ hai)
Tham khảo thêm: Công thức tính diện tích hình thoi, chu vi hình thoi
5/ CÔNG THỨC TÍNH HÌNH TAM GIÁC
- Chu vi: P = a + b + c (a: cạnh thứ nhất; b: cạnh thứ hai; c: cạnh thứ ba)
- Diện tích: S = (a x h) : 2 (a: cạnh đáy)
- Chiều cao: h = (S x 2) : a (h: chiều cao)
- Cạnh đáy: a = (S x 2) : h
- Công thức tính diện tích hình tam giác, chu vi hình tam giác
6/ CÔNG THỨC TÍNH HÌNH TAM GIÁC VUÔNG
Diện tích hình tam giác vuông bằng một nửa tích hai cạnh góc vuông.
S = (a x b) : 2 (trong đó a và b lần lượt là độ dài của hai cạnh góc vuông)
7/ CÔNG THỨC TÍNH HÌNH THANG
- Diện tích: S = (a + b) x h : 2 (a & b: cạnh đáy)
- Chiều cao: h = (S x 2) : a (h: chiều cao)
- Cạnh đáy: a = (S x 2) : h
- Chu vi hình thang: Muốn tìm chu vi hình thang ta lấy tổng chiều dài hai cạnh bên và hai cạnh đáy: P = a + b + c + d
- Tổng chiều dài hai đáy hình thang: Muốn tìm tổng chiều dài hai đáy hình thang, ta lấy hai lần diện tích chia cho chiều cao.
- Muốn tìm đáy lớn, (đáy bé) hình thang ta lấy tổng hai đáy trừ đi đáy bé (đáy lớn)
>> Xem thêm: Công thức tính diện tích hình thang, chu vi hình thang
8/ CÔNG THỨC TÍNH HÌNH THANG VUÔNG, CÂN
Có một cạnh bên vuông góc với hai đáy, cạnh bên đó chính là chiều cao hình thang vuông. Khi tính diện tích hình thang vuông ta tính như cách tìm hình thang.
Hình thang cân: có hai đường chéo bằng nhau, hai góc tù bằng nhau và hai góc nhọn bằng nhau.
9/ CÔNG THỨC TÍNH HÌNH TRÒN:
- Bán kính hình tròn: r = d : 2 hoặc r = C : 2 : 3,14
- Đường kính hình tròn: d = r x 2 hoặc d = C : 3,14
- Chu vi hình tròn: C = r x 2 x 3,14 hoặc C = d x 3,14
- Diện tích hình tròn: C = r x r x 3,14
- Tìm diện tích thành giếng:
- Tìm diện tích miệng giếng: S = r x r x 3,14
- Bán kính hình tròn lớn = bán kính hình tròn nhỏ + chiều rộng thành giếng
- Diện tích hình tròn lớn: S = r x r x 3,14
- Tìm diện tích thành giếng = diện tích hình tròn lớn - diện tích hình tròn nhỏ
Tham khảo: Công thức tính chu vi hình tròn và diện tích hình tròn
- Bài tập toán lớp 5: Bài toán về hình tròn
10/ CÔNG THỨC TÍNH HÌNH HỘP CHỮ NHẬT
- Diện tích xung quanh: Sxq = Pđáy x h
- Chu vi đáy: Pđáy= Sxq : h
- Chiều cao: h = Sxq : P đáy
- Nếu đáy của hình hộp chữ nhật là hình chữ nhật thì:
Pđáy = (a + b) x 2
- Nếu đáy của hình hộp chữ nhật là hình vuông thì:
Pđáy = a x 4
- Diện tích toàn phần: Stp = Sxq + S2đáy
Sđáy = a x b
- Thể tích: V = a x b x c
- Muốn tìm chiều cao cả hồ nước (bể nước)
h = v : Sđáy
- Muốn tìm diện tích đáy của hồ nước (bể nước)
Sđáy = v : h
- Muốn tìm chiều cao mặt nước đang có trong hồ ta lấy thể tích nước đang có trong hồ (m3) chia cho diện tích đáy hồ (m2)
h = v : Sđáyhồ
- Muốn tìm chiều cao mặt nước cách miệng hồ (bể) (hay còn gọi là chiều cao phần hồ trống)
+ Bước 1: Ta tìm chiều cao mặt nước đang có trong hồ.
+ Bước 2: Lấy chiều cao cả cái hồ trừ đi chiều cao mặt nước đang có trong hồ
- Diện tích quét vôi:
- Bước 1: Chu vi đáy căn phòng.
- Bước 2: Diện tích bốn bức tường (Sxq)
- Bước 3: Diện tích trần nhà (S = a x b)
- Bước 4: Diện tích bốn bức tường (Sxq) và trần nhà
- Bước 5: Diện tích các cửa (nếu có)
- Bước 6: Diện tích quét vôi = diện tích bốn bức tường và trần – diện tích các cửa.
>> Tham khảo chi tiết: Công thức tính thể tích hình hộp chữ nhật, diện tích hình hộp chữ nhật
11/ CÔNG THỨC TÍNH HÌNH LẬP PHƯƠNG
- Diện tích xung quanh: Muốn tìm diện tích xung quanh của hình lập phương ta lấy cạnh nhân với cạnh rồi nhân với 4: Sxq = (a x a) x 4
- Cạnh: (a x a) = Sxq : 4
- Diện tích toàn phần: Muốn tìm diện tích toàn phần của hình lập phương ta lấy cạnh nhân với cạnh rồi nhân với 6: Stp = (a x a) x 6
- Cạnh: (a x a) = Stp : 6
- Thể tích ( V ): Muốn tìm thể tích hình lập phương ta lấy cạnh nhân với cạnh rồi nhân với cạnh: V = a x a x a
>> Tham khảo chi tiết: Công thức tính thể tích hình lập phương, diện tích hình lập phương
12. CÔNG THỨC TÍNH HÌNH TRỤ
- Công Thức Tính Diện Tích Xung Quanh Hình Trụ
S (xung quanh) = 2 x π x r x h
+ r: bán kính hình trụ
+ h: chiều cao nối từ đáy tới đỉnh hình trụ
+ π = 3,14
- Công Thức Tính Diện Tích Toàn Phần Hình Trụ
S (toàn phần) = 2 x π x r2 + 2 x π x r x h = 2 π x r x (r + h)
Trong đó:
+ r: bán kính hình trụ
+ 2 x π x r x h: diện tích xung quanh hình trụ
+ 2 x π x r2: diện tích của hai đáy
- Công thức tính thể tích hình trụ
V = π x r2 x h
Trong đó:
- r: bán kính hình trụ
- h: chiều cao hình trụ
: Lúc đầu có 5 xe tải chở tổng cộng 210 bao đường vào kho, sau đó có thêm 3 xe nữa chở đường vào kho. Hỏi có tất cả bao nhiêu bao đường được chở vào kho? (Biết các xe tải chở số bao đường bằng nhau)
Hướng dẫn:
Mỗi xe tải chở số bao đường là: 210 : 5 = 42 (bao)
3 xe chở được số bao gạo là: 3 x 42 = 126 (bao)
Tổng số bao đường được chở vào kho là: 210 + 126 = 336 (bao)
Đáp số: 336 bao đường
Giải:
Số học sinh nam là:
300 - 165 = 135 (bạn)
Tỉ số phần trăm giữa số học sinh nam và tổng số học sinh cả khối là:
135300 =45100 =45%
Đáp số: 45%
Số học sinh nam của trường đó là: 300-165=135 ( học sinh ) Số học sinh nam chiếm số phần trăm của học sinh khối 5 của trường đó là:135:300=45%
Ta có:
1/10 = 10/100
1/5 = 20/100
Vậy các phân số có mẫu là 100, lớn hơn 1/10 và bé hơn 1/5 là:
11/100; 12/100; 13/100; 14/100; 15/100; 16/100; 17/100; 18/100; 19/100
Dạng 1: Tìm tỉ số phần trăm của hai số A và B
Cách làm: Ta lấy A chia cho B, sau đó lấy kết quả tìm được nhân nhẩm với 100 rồi viết kí hiệu % vào sau kết quả đó
A: B = C
C x 100 = D%
Ví dụ: Tìm tỉ số phần trăm của 15 và 40
Ta có: 15 : 40 = 0,375 = 37,5 %
hok tốt , dạng này à bn !
m.n ủng hộ chanh nha
Cảm ơn bạn Chanh nhiều nha !
Mình hỏi cho em mình !
Em mik học lớp 5
Cảm ơn Chanh !
Các công thức thường gặp trong môn Toán lớp 4 và Toán lớp 5:
Phép cộng
I. Công thức tổng quát:
II. Tính chất:
1. Tính chất giao hoán:
Kết luận: Khi đổi chỗ các số hạng trong một tổng thì tổng không thay đổi.
Công thức tổng quát: a + b = b + a
2. Tính chất kết hợp:
Kết luận: Khi cộng tổng hai số với số thứ ba, ta có thể cộng số thứ nhất với tổng hai số còn lại.
Công thức tổng quát: (a + b) + c = a + (b + c)
3. Tính chất: Cộng với 0:
Kết luận: Bất kì một số cộng với 0 cũng bằng chính nó.
CTTQ: a + 0 = 0 + a = a
Phép trừ
I. Công thức tổng quát:
II. Tính chất:
1. Trừ đi 0:
Kết luận: Bất kì một số trừ đi 0 vẫn bằng chính nó.
CTTQ: a - 0 = a
2. Trừ đi chính nó:
Kết luận: Một số trừ đi chính nó thì bằng 0.
CTTQ: a - a = 0
3. Trừ đi một tổng:
Kết luận: Khi trừ một số cho một tổng, ta có thể lấy số đó trừ dần từng số hạng của tổng đó.
CTTQ: a - (b + c) = a - b - c = a - c - b
4. Trừ đi một hiệu:
Kết luận: Khi trừ một số cho một hiệu, ta có thể lấy số đó trừ đi số bị trừ rồi cộng với số trừ.
CTTQ: a - (b - c) = a - b + c = a + c - b
Phép nhân
I. Công thức tổng quát
II. Tính chất:
1. Tính chất giao hoán:
Kết luận: Khi đổi chỗ các thừa số trong một tích thì tích không thay đổi.
CTTQ: a × b = b × a
2. Tính chất kết hợp:
Kết luận: Muốn nhân tích hai số với số thứ ba, ta có thể nhân số thứ nhất với tích hai số còn lại.
CTTQ: (a × b) × c = a × (b × c)
3. Tính chất: nhân với 0:
Kết luận: Bất kì một số nhân với 0 cũng bằng 0.
CTTQ: a × 0 = 0 × a = 0
4. Tính chất nhân với 1:
Kết luận: Một số nhân với 1 thì bằng chính nó.
CTTQ: a × 1 = 1 × a = a
5. Nhân với một tổng:
Kết luận: Khi nhân một số với một tổng, ta có thể lấy số đó nhân với từng số hạng của tổng rồi cộng các kết quả với nhau.
CTTQ: a × (b + c) = a × b + a × c
6. Nhân với một hiệu:
Kết luận: Khi nhân một số với một hiệu, ta có thể lấy số đó nhân với số bị trừ và số trừ rồi trừ hai kết quả cho nhau.
CTTQ: a × (b - c) = a × b - a × c
Phép chia
I. Công thức tổng quát:
Phép chia còn dư:
a : b = c (dư r)
số bị chia số chia thương số dư
Chú ý: Số dư phải bé hơn số chia.
II. Công thức:
1. Chia cho 1: Bất kì một số chia cho 1 vẫn bằng chính nó.
CTTQ: a : 1 = a
2. Chia cho chính nó: Một số chia cho chính nó thì bằng 1.
CTTQ: a : a = 1
3. 0 chia cho một số: 0 chia cho một số bất kì khác 0 thì bằng 0
CTTQ: 0 : a = 0
4. Một tổng chia cho một số: Khi chia một tổng cho một số, nếu cácsố hạng của tổng đều chia hết cho số đó, thì ta có thể chia từng số hạng cho số chia rồi cộng các kết quả tìm được với nhau.
CTTQ: (b + c) : a = b : a + c : a
5. Một hiệu chia cho một số: Khi chia một hiệu cho một số, nếu số bị trừ và số trừ đều chia hết cho số đó, thì ta có thể lấy số bị trừ và số trừ chia cho số đó rồi trừ hai kết quả cho nhau.
CTTQ: (b - c) : a = b : a - c : a
6. Chia một số cho một tích: Khi chia một số cho một tích, ta có thể chia số đó cho một thừa số, rồi lấy kết quả tìm được chia tiếp cho thừa số kia.
CTTQ: a :( b × c) = a : b : c = a : c : b
7. Chia một tích cho một số: Khi chia một tích cho một số, ta có thể lấy một thừa số chia cho số đó (nếu chia hết), rồi nhân kết quả với thừa số kia.
CTTQ: (a × b) : c = a : c × b = b : c × a
Tính chất chia hết
1, Chia hết cho 2: Các số có tận cùng là 0, 2, 4, 6, 8 (là các số chẵn) thì chia hết cho 2.
VD: 312; 54768;....
2, Chia hết cho 3: Các số có tổng các chữ số chia hết cho 3 thì chia hết cho 3.
VD: Cho số 4572
Ta có 4+ 5 + 7+ 2 = 18; 18 : 3 = 6 Nên 4572 : 3 = 1524
3, Chia hết cho 4: Các số có hai chữ số tận cùng chia hết cho 4 thì chia hết cho 4.
VD: Cho số: 4572
Ta có 72 : 4 = 18 Nên 4572 : 4 = 11 4 3
4, chia hết cho 5: Các số có tận cùng là 0 hoặc 5 thì chia hết cho 5.
VD: 5470; 7635
5, Chia hết cho 6 (Nghĩa là chia hết cho 2 và 3): Các số chẵn và có tổng các chữ số chia hết cho 3 thì chia hết cho 6.
VD: Cho số 1356
Ta có 1+3+5+6 =15; 15:3 = 5 Nên 1356 : 3 = 452
6, Chia hết cho 10 (Nghĩa là chia hết cho 2 và 5): Các số tròn chục (có hàng đơn vị bằng 0) thì chia hết cho 10.
VD: 130; 2790
7, Chia hết cho 11: Xét tổng các chữ số ở hàng chẵn bằng tổng các chữ số ở hàng lẻ thì số đó chia hết cho 11.
VD: Cho số 48279
Ta có 4 + 2 + 9 = 8 + 7 = 15 Nên 48279 : 11 = 4389
8, Chia hết cho 15 (Nghĩa là chia hết cho 3 và5): Các số có chữ số hàng đơn vị là 0 (hoặc 5) và tổng các chữ số chia hết cho 3 thì chia hết cho 15.
VD: Cho số 5820
Ta có 5 + 8 + 2 + 0 = 15; 15 : 3 = 5 Nên 5820 : 15 = 388
9, Chia hết cho 36 (Nghĩa là chia hết cho 4 và 9): Các số có hai chữ số tận cùng chia hết cho 4 và tổng các chữ số chia hết cho 9 thì chia hết cho 36.
VD: Cho số: 45720
Ta có 20 : 4 = 5 và (4 + 5 + 7 + 2 + 0) = 18
18 : 9 = 2 Nên 45720 : 36 = 1270
Toán Trung bình cộng
1. Muốn tìm trung bình cộng (TBC) của nhiều số, ta tính tổng của các số đó rồi chia tổng đó cho số các số hạng.
CTTQ: TBC = tổng các số : số các số hạng
2. Tìm tổng các số: ta lấy TBC nhân số các số hạng
CTTQ: Tổng các số = TBC × số các số hạng
Tìm hai số khi biết tổng và hiệu của hai số đó
Cách 1:
Tìm số lớn = (Tổng + hiệu) : 2
Tìm số bé = số lớn - hiệu
hoặc số bé = tổng - số lớn
Cách 2:
Tìm số bé = (tổng - hiệu) : 2
Tìm số lớn = số bé + hiệu
hoặc số lớn = tổng - số bé
Tìm hai số khi biết tổng và tỉ số của hai số đó
Cách làm:
Bước 1: Tìm tổng số phần bằng nhau = Lấy số phần số lớn + số phần số bé
Bước 2: Tìm số bé = Lấy tổng : tổng số phần bằng nhau × số phần số bé
Bước 3: Tìm số lớn = lấy tổng – số bé
Tìm hai số khi biết hiệu và tỉ số của hai số đó
Cách làm:
Bước 1: Tìm hiệu số phần bằng nhau = Lấy số phần số lớn - số phần số bé
Bước 2: Tìm số bé = Lấy hiệu : hiệu số phần bằng nhau × số phần số bé
Bước: Tìm số lớn = Lấy hiệu + số bé
Toán tỉ lệ thuận
1. Khái niệm: Hai đại lượng tỉ lệ thuận khi đại lượng này tăng (hoặc giảm) bao nhiêu lần thì đại lượng kia cũng tăng (hoặc giảm) đi bấy nhiêu lần.
2. Bài toán mẫu: Một ô tô trong hai giờ đi được 90km. Hỏi trong 4 giờ ô tô đó đi được bao nhiêu ki- lô- mét?
Tóm tắt:
2 giờ: 90 km
4 giờ: … km?
Bài giải
Cách 1:
Trong một giờ ô tô đi được là:
90 : 2 = 45 (km) (*)
Trong 4 giờ ô tô đi được là:
45 × 4 = 180 (km)
Đáp số: 180 km
Cách 2:
4 giờ gấp 2 giờ số lần là:
4 : 2 = 2 (lần) (**)
Trong 4 giờ ô tô đi được là:
90 × 2 = 180 (km)
Đáp số: 180 km
(*) Bước này là bước “ rút về đơn vị” (**) Bước này là bước “ tìm tỉ số”
Toán tỉ lệ nghịch
1. Khái niệm: Hai đại lượng tỉ lệ nghịch khi đại lượng này tăng (hoặc giảm) bao nhiêu lần thì đại lượng kia lại giảm (hoặc tăng) bấy nhiêu lần.
2. Bài toán mẫu: Muốn đắp xong nền nhà trong hai ngày, cần có 12 người. Hỏi muốn đắp xong nền nhà đó trong 4 ngày thì cần có bao nhiêu người? (Mức làm của mỗi người như nhau)
Tóm tắt:
2 ngày: 12 người
4 ngày: …. người?
Bài giải
Cách 1:
Muốn đắp xong nền nhà trong 1 ngày, cần số người là:
12 × 2 = 24 (người) (*)
Muốn đắp xong nền nhà trong 4 ngày, cần số người là:
24 : 4 = 6 (người)
Đáp số: 6 người
(*) Bước này là bước “ rút về đơn vị”
Cách 2:
4 ngày gấp 2 ngày số lần là:
4 : 2 = 2 (lần) (**)
Muốn đắp xong nền nhà trong 4 ngày, cần số người là:
12 : 2 = 6 (người)
Đáp số: 6 người
(**) Bước này là bước “ tìm tỉ số”
Tìm phân số của một số
KL: muốn tìm phân số của một số, ta lấy số đó nhân với phân số đã cho.
Công thức tổng quát: giá trị a/b của A = A × a/b
VD: Trong rổ có 12 quả cam. Hỏi 2/3 số cam trong rổ là bao nhiêu?
Giải
2/3 Số cam trong rổ là:
12 × 2/3 = 8 (quả)
ĐS: 8 quả
Tìm một số biết giá trị phân số của số đó
KL: Muốn tìm một số khi biết một giá trị phân số của số đó, ta lấy giá trị đó chia cho phân số.
CTTQ:
Giá trị a/b của A = giá trị của phân số : a/b
VD: Cho 2/3 số cam trong rổ cam là 8 quả. Hỏi rổ cam đó có bao nhiêu quả?
Giải
Số cam trong rổ là:
8 : 2/3 = 12 (quả)
ĐS: 12 quả
Tỉ số phần trăm
1. Tìm tỉ số phần trăm của hai số: ta làm như sau:
- Tìm thương của hai số đó dưới dạng số thập phân.
- Nhân thương đó với 100 và viết thêm kí hiệu phần trăm (%) vào bên phải tích tìm được.
CTTQ: a : b = T (STP) = STP × 100 (%)
VD: Tìm tỉ số phần trăm của 315 và 600
Giải
Tỉ số phần trăm của 315 và 600 là:
315 : 600 = 0,525 = 52,5 %
ĐS: 52,5 %
2. Tìm giá trị phần trăm của một số cho trước: ta lấy số đó chia cho 100 rồi nhân với số phần trăm hoặc lấy số đó nhân với số phần trăm rồi chia cho 100.
CTTQ: Giá trị % = Số A : 100 × số % hoặc Giá trị % = Số A × số % : 100
VD: Trường Đại Từ có 600 học sinh. Số học sinh nữ chiếm 45% số học sinh toàn trường. Tính số học sinh nữ của trường.
Giải
Số học sinh của trường đó là:
600 : 100 × 45 = 270 (học sinh)
ĐS: 270 học sinh
3. Tìm một số biết giá trị phần trăm của số đó: ta lấy giá trị phần trăm của số đó chia cho số phần trăm rồi nhân với 100 hoặc ta lấy giá trị phần trăm của số đó nhân với 100 rồi chia cho số phần trăm.
CTTQ: Số A = Giá trị % : số phần trăm × 100 hoặc Số A = Giá trị % × 100 : số phần trăm
VD: Tìm một số biết 30% của nó bằng 72.
Giải
Giá trị của số đó là:
72 : 30 × 100 = 240
ĐS: 240
A. Phép cộng
I. Công thức tổng quát:
II. Tính chất:
1. Tính chất giao hoán:
Kết luận: Khi đổi chỗ các số hạng trong một tổng thì tổng không thay đổi.
Công thức tổng quát: a + b = b + a
2. Tính chất kết hợp:
Kết luận: Khi cộng tổng hai số với số thứ ba, ta có thể cộng số thứ nhất với tổng hai số còn lại.
Công thức tổng quát: (a + b) + c = a + (b + c)
3. Tính chất: Cộng với 0:
Kết luận: Bất kì một số cộng với 0 cũng bằng chính nó.
CTTQ: a + 0 = 0 + a = a
B. Phép trừ
I. Công thức tổng quát:
II. Tính chất:
1. Trừ đi 0:
Kết luận: Bất kì một số trừ đi 0 vẫn bằng chính nó.
CTTQ: a - 0 = a
2. Trừ đi chính nó:
Kết luận: Một số trừ đi chính nó thì bằng 0.
CTTQ: a - a = 0
3. Trừ đi một tổng:
Kết luận: Khi trừ một số cho một tổng, ta có thể lấy số đó trừ dần từng số hạng của tổng đó.
CTTQ: a - (b + c) = a - b - c = a - c - b
4. Trừ đi một hiệu:
Kết luận: Khi trừ một số cho một hiệu, ta có thể lấy số đó trừ đi số bị trừ rồi cộng với số trừ.
CTTQ: a - (b - c) = a - b + c = a + c - b
C. Phép nhân
I. Công thức tổng quát
II. Tính chất:
1. Tính chất giao hoán:
Kết luận: Khi đổi chỗ các thừa số trong một tích thì tích không thay đổi.
CTTQ: a × b = b × a
2. Tính chất kết hợp:
Kết luận: Muốn nhân tích hai số với số thứ ba, ta có thể nhân số thứ nhất với tích hai số còn lại.
CTTQ: (a × b) × c = a × (b × c)
3. Tính chất: nhân với 0:
Kết luận: Bất kì một số nhân với 0 cũng bằng 0.
CTTQ: a × 0 = 0 × a = 0
4. Tính chất nhân với 1:
Kết luận: Một số nhân với 1 thì bằng chính nó.
CTTQ: a × 1 = 1 × a = a
5. Nhân với một tổng:
Kết luận: Khi nhân một số với một tổng, ta có thể lấy số đó nhân với từng số hạng của tổng rồi cộng các kết quả với nhau.
CTTQ: a × (b + c) = a × b + a × c
6. Nhân với một hiệu:
Kết luận: Khi nhân một số với một hiệu, ta có thể lấy số đó nhân với số bị trừ và số trừ rồi trừ hai kết quả cho nhau.
CTTQ: a × (b - c) = a × b - a × c
D. Phép chia
I. Công thức tổng quát:
Phép chia còn dư:
a : b = c (dư r)
số bị chia số chia thương số dư
Chú ý: Số dư phải bé hơn số chia.
II. Công thức:
1. Chia cho 1: Bất kì một số chia cho 1 vẫn bằng chính nó.
CTTQ: a : 1 = a
2. Chia cho chính nó: Một số chia cho chính nó thì bằng 1.
CTTQ: a : a = 1
3. 0 chia cho một số: 0 chia cho một số bất kì khác 0 thì bằng 0
CTTQ: 0 : a = 0
4. Một tổng chia cho một số: Khi chia một tổng cho một số, nếu cácsố hạng của tổng đều chia hết cho số đó, thì ta có thể chia từng số hạng cho số chia rồi cộng các kết quả tìm được với nhau.
CTTQ: (b + c) : a = b : a + c : a
5. Một hiệu chia cho một số: Khi chia một hiệu cho một số, nếu số bị trừ và số trừ đều chia hết cho số đó, thì ta có thể lấy số bị trừ và số trừ chia cho số đó rồi trừ hai kết quả cho nhau.
CTTQ: (b - c) : a = b : a - c : a
6. Chia một số cho một tích: Khi chia một số cho một tích, ta có thể chia số đó cho một thừa số, rồi lấy kết quả tìm được chia tiếp cho thừa số kia.
CTTQ: a :(b × c) = a : b : c = a : c : b
7. Chia một tích cho một số: Khi chia một tích cho một số, ta có thể lấy một thừa số chia cho số đó (nếu chia hết), rồi nhân kết quả với thừa số kia.
CTTQ: (a × b) : c = a : c × b = b : c × a
E. Tính chất chia hết
1, Chia hết cho 2: Các số có tận cùng là 0, 2, 4, 6, 8 (là các số chẵn) thì chia hết cho 2.
VD: 312; 54768;....
2, Chia hết cho 3: Các số có tổng các chữ số chia hết cho 3 thì chia hết cho 3.
VD: Cho số 4572
Ta có 4+ 5 + 7+ 2 = 18; 18 : 3 = 6 Nên 4572 : 3 = 1524
3, Chia hết cho 4: Các số có hai chữ số tận cùng chia hết cho 4 thì chia hết cho 4.
VD: Cho số: 4572
Ta có 72 : 4 = 18 Nên 4572 : 4 = 11 4 3
4, chia hết cho 5: Các số có tận cùng là 0 hoặc 5 thì chia hết cho 5.
VD: 5470; 7635
5, Chia hết cho 6 (Nghĩa là chia hết cho 2 và 3): Các số chẵn và có tổng các chữ số chia hết cho 3 thì chia hết cho 6.
VD: Cho số 1356
Ta có 1+3+5+6 =15; 15:3 = 5 Nên 1356 : 3 = 452
6, Chia hết cho 10 (Nghĩa là chia hết cho 2 và 5): Các số tròn chục (có hàng đơn vị bằng 0) thì chia hết cho 10.
VD: 130; 2790
7, Chia hết cho 11: Xét tổng các chữ số ở hàng chẵn bằng tổng các chữ số ở hàng lẻ thì số đó chia hết cho 11.
VD: Cho số 48279
Ta có 4 + 2 + 9 = 8 + 7 = 15 Nên 48279 : 11 = 4389
8, Chia hết cho 15 (Nghĩa là chia hết cho 3 và 5): Các số có chữ số hàng đơn vị là 0 (hoặc 5) và tổng các chữ số chia hết cho 3 thì chia hết cho 15.
VD: Cho số 5820
Ta có 5 + 8 + 2 + 0 = 15; 15 : 3 = 5 Nên 5820 : 15 = 388
9, Chia hết cho 36 (Nghĩa là chia hết cho 4 và 9): Các số có hai chữ số tận cùng chia hết cho 4 và tổng các chữ số chia hết cho 9 thì chia hết cho 36.
VD: Cho số: 45720
Ta có 20 : 4 = 5 và (4 + 5 + 7 + 2 + 0) = 18
18 : 9 = 2 Nên 45720 : 36 = 1270
F. Toán Trung bình cộng
1. Muốn tìm trung bình cộng (TBC) của nhiều số, ta tính tổng của các số đó rồi chia tổng đó cho số các số hạng.
CTTQ: TBC = tổng các số : số các số hạng
2. Tìm tổng các số: ta lấy TBC nhân số các số hạng
CTTQ: Tổng các số = TBC × số các số hạng
Tìm hai số khi biết tổng và hiệu của hai số đó
Cách 1:
Tìm số lớn = (Tổng + hiệu) : 2
Tìm số bé = số lớn - hiệu
hoặc số bé = tổng - số lớn
Cách 2:
Tìm số bé = (tổng - hiệu) : 2
Tìm số lớn = số bé + hiệu
hoặc số lớn = tổng - số bé
Tìm hai số khi biết tổng và tỉ số của hai số đó
Cách làm:
Bước 1: Tìm tổng số phần bằng nhau = Lấy số phần số lớn + số phần số bé
Bước 2: Tìm số bé = Lấy tổng : tổng số phần bằng nhau × số phần số bé
Bước 3: Tìm số lớn = lấy tổng – số bé
Tìm hai số khi biết hiệu và tỉ số của hai số đó
Cách làm:
Bước 1: Tìm hiệu số phần bằng nhau = Lấy số phần số lớn - số phần số bé
Bước 2: Tìm số bé = Lấy hiệu : hiệu số phần bằng nhau × số phần số bé
Bước: Tìm số lớn = Lấy hiệu + số bé
G. Toán tỉ lệ thuận
1. Khái niệm: Hai đại lượng tỉ lệ thuận khi đại lượng này tăng (hoặc giảm) bao nhiêu lần thì đại lượng kia cũng tăng (hoặc giảm) đi bấy nhiêu lần.
2. Bài toán mẫu: Một ô tô trong hai giờ đi được 90km. Hỏi trong 4 giờ ô tô đó đi được bao nhiêu ki- lô- mét?
Tóm tắt:
2 giờ: 90 km
4 giờ: … km?
Bài giải
Cách 1:
Trong một giờ ô tô đi được là:
90 : 2 = 45 (km) (*)
Trong 4 giờ ô tô đi được là:
45 × 4 = 180 (km)
Đáp số: 180 km
Cách 2:
4 giờ gấp 2 giờ số lần là:
4 : 2 = 2 (lần) (**)
Trong 4 giờ ô tô đi được là:
90 × 2 = 180 (km)
Đáp số: 180 km
(*) Bước này là bước “ rút về đơn vị” (**) Bước này là bước “ tìm tỉ số”
H. Toán tỉ lệ nghịch
1. Khái niệm: Hai đại lượng tỉ lệ nghịch khi đại lượng này tăng (hoặc giảm) bao nhiêu lần thì đại lượng kia lại giảm (hoặc tăng) bấy nhiêu lần.
2. Bài toán mẫu: Muốn đắp xong nền nhà trong hai ngày, cần có 12 người. Hỏi muốn đắp xong nền nhà đó trong 4 ngày thì cần có bao nhiêu người? (Mức làm của mỗi người như nhau)
Tóm tắt:
2 ngày: 12 người
4 ngày: …. người?
Bài giải
Cách 1:
Muốn đắp xong nền nhà trong 1 ngày, cần số người là:
12 × 2 = 24 (người) (*)
Muốn đắp xong nền nhà trong 4 ngày, cần số người là:
24 : 4 = 6 (người)
Đáp số: 6 người
(*) Bước này là bước “ rút về đơn vị”
Cách 2:
4 ngày gấp 2 ngày số lần là:
4 : 2 = 2 (lần) (**)
Muốn đắp xong nền nhà trong 4 ngày, cần số người là:
12 : 2 = 6 (người)
Đáp số: 6 người
(**) Bước này là bước “ tìm tỉ số”
I. Tìm phân số của một số
KL: muốn tìm phân số của một số, ta lấy số đó nhân với phân số đã cho.
Công thức tổng quát: giá trị a/b của A = A × a/b
VD: Trong rổ có 12 quả cam. Hỏi 2/3 số cam trong rổ là bao nhiêu?
Giải
2/3 Số cam trong rổ là:
12 × 2/3 = 8 (quả)
ĐS: 8 quả
K. Tìm một số biết giá trị phân số của số đó
KL: Muốn tìm một số khi biết một giá trị phân số của số đó, ta lấy giá trị đó chia cho phân số.
CTTQ:
Giá trị a/b của A = giá trị của phân số : a/b
VD: Cho 2/3 số cam trong rổ cam là 8 quả. Hỏi rổ cam đó có bao nhiêu quả?
Giải
Số cam trong rổ là:
8 : 2/3 = 12 (quả)
ĐS: 12 quả
L. Tỉ số phần trăm
1. Tìm tỉ số phần trăm của hai số: ta làm như sau:
- Tìm thương của hai số đó dưới dạng số thập phân.
- Nhân thương đó với 100 và viết thêm kí hiệu phần trăm (%) vào bên phải tích tìm được.
CTTQ: a : b = T (STP) = STP × 100 (%)
VD: Tìm tỉ số phần trăm của 315 và 600
Giải
Tỉ số phần trăm của 315 và 600 là:
315 : 600 = 0,525 = 52,5 %
ĐS: 52,5 %
2. Tìm giá trị phần trăm của một số cho trước: ta lấy số đó chia cho 100 rồi nhân với số phần trăm hoặc lấy số đó nhân với số phần trăm rồi chia cho 100.
CTTQ: Giá trị % = Số A : 100 × số % hoặc Giá trị % = Số A × số % : 100
VD: Trường Đại Từ có 600 học sinh. Số học sinh nữ chiếm 45% số học sinh toàn trường. Tính số học sinh nữ của trường.
Giải
Số học sinh của trường đó là:
600 : 100 × 45 = 270 (học sinh)
ĐS: 270 học sinh
3. Tìm một số biết giá trị phần trăm của số đó: ta lấy giá trị phần trăm của số đó chia cho số phần trăm rồi nhân với 100 hoặc ta lấy giá trị phần trăm của số đó nhân với 100 rồi chia cho số phần trăm.
CTTQ: Số A = Giá trị % : số phần trăm × 100 hoặc Số A = Giá trị % × 100 : số phần trăm
VD: Tìm một số biết 30% của nó bằng 72.
Giải
Giá trị của số đó là:
72 : 30 × 100 = 240
ĐS: 240
A. Phép cộng
I. Công thức tổng quát:
II. Tính chất:
1. Tính chất giao hoán:
Kết luận: Khi đổi chỗ các số hạng trong một tổng thì tổng không thay đổi.
Công thức tổng quát: a + b = b + a
2. Tính chất kết hợp:
Kết luận: Khi cộng tổng hai số với số thứ ba, ta có thể cộng số thứ nhất với tổng hai số còn lại.
Công thức tổng quát: (a + b) + c = a + (b + c)
3. Tính chất: Cộng với 0:
Kết luận: Bất kì một số cộng với 0 cũng bằng chính nó.
CTTQ: a + 0 = 0 + a = a
B. Phép trừ
I. Công thức tổng quát:
II. Tính chất:
1. Trừ đi 0:
Kết luận: Bất kì một số trừ đi 0 vẫn bằng chính nó.
CTTQ: a - 0 = a
2. Trừ đi chính nó:
Kết luận: Một số trừ đi chính nó thì bằng 0.
CTTQ: a - a = 0
3. Trừ đi một tổng:
Kết luận: Khi trừ một số cho một tổng, ta có thể lấy số đó trừ dần từng số hạng của tổng đó.
CTTQ: a - (b + c) = a - b - c = a - c - b
4. Trừ đi một hiệu:
Kết luận: Khi trừ một số cho một hiệu, ta có thể lấy số đó trừ đi số bị trừ rồi cộng với số trừ.
CTTQ: a - (b - c) = a - b + c = a + c - b
C. Phép nhân
I. Công thức tổng quát
II. Tính chất:
1. Tính chất giao hoán:
Kết luận: Khi đổi chỗ các thừa số trong một tích thì tích không thay đổi.
CTTQ: a × b = b × a
2. Tính chất kết hợp:
Kết luận: Muốn nhân tích hai số với số thứ ba, ta có thể nhân số thứ nhất với tích hai số còn lại.
CTTQ: (a × b) × c = a × (b × c)
3. Tính chất: nhân với 0:
Kết luận: Bất kì một số nhân với 0 cũng bằng 0.
CTTQ: a × 0 = 0 × a = 0
4. Tính chất nhân với 1:
Kết luận: Một số nhân với 1 thì bằng chính nó.
CTTQ: a × 1 = 1 × a = a
5. Nhân với một tổng:
Kết luận: Khi nhân một số với một tổng, ta có thể lấy số đó nhân với từng số hạng của tổng rồi cộng các kết quả với nhau.
CTTQ: a × (b + c) = a × b + a × c
6. Nhân với một hiệu:
Kết luận: Khi nhân một số với một hiệu, ta có thể lấy số đó nhân với số bị trừ và số trừ rồi trừ hai kết quả cho nhau.
CTTQ: a × (b - c) = a × b - a × c
D. Phép chia
I. Công thức tổng quát:
Phép chia còn dư:
a : b = c (dư r)
số bị chia số chia thương số dư
Chú ý: Số dư phải bé hơn số chia.
II. Công thức:
1. Chia cho 1: Bất kì một số chia cho 1 vẫn bằng chính nó.
CTTQ: a : 1 = a
2. Chia cho chính nó: Một số chia cho chính nó thì bằng 1.
CTTQ: a : a = 1
3. 0 chia cho một số: 0 chia cho một số bất kì khác 0 thì bằng 0
CTTQ: 0 : a = 0
4. Một tổng chia cho một số: Khi chia một tổng cho một số, nếu cácsố hạng của tổng đều chia hết cho số đó, thì ta có thể chia từng số hạng cho số chia rồi cộng các kết quả tìm được với nhau.
CTTQ: (b + c) : a = b : a + c : a
5. Một hiệu chia cho một số: Khi chia một hiệu cho một số, nếu số bị trừ và số trừ đều chia hết cho số đó, thì ta có thể lấy số bị trừ và số trừ chia cho số đó rồi trừ hai kết quả cho nhau.
CTTQ: (b - c) : a = b : a - c : a
6. Chia một số cho một tích: Khi chia một số cho một tích, ta có thể chia số đó cho một thừa số, rồi lấy kết quả tìm được chia tiếp cho thừa số kia.
CTTQ: a :(b × c) = a : b : c = a : c : b
7. Chia một tích cho một số: Khi chia một tích cho một số, ta có thể lấy một thừa số chia cho số đó (nếu chia hết), rồi nhân kết quả với thừa số kia.
CTTQ: (a × b) : c = a : c × b = b : c × a
E. Tính chất chia hết
1, Chia hết cho 2: Các số có tận cùng là 0, 2, 4, 6, 8 (là các số chẵn) thì chia hết cho 2.
VD: 312; 54768;....
2, Chia hết cho 3: Các số có tổng các chữ số chia hết cho 3 thì chia hết cho 3.
VD: Cho số 4572
Ta có 4+ 5 + 7+ 2 = 18; 18 : 3 = 6 Nên 4572 : 3 = 1524
3, Chia hết cho 4: Các số có hai chữ số tận cùng chia hết cho 4 thì chia hết cho 4.
VD: Cho số: 4572
Ta có 72 : 4 = 18 Nên 4572 : 4 = 11 4 3
4, chia hết cho 5: Các số có tận cùng là 0 hoặc 5 thì chia hết cho 5.
VD: 5470; 7635
5, Chia hết cho 6 (Nghĩa là chia hết cho 2 và 3): Các số chẵn và có tổng các chữ số chia hết cho 3 thì chia hết cho 6.
VD: Cho số 1356
Ta có 1+3+5+6 =15; 15:3 = 5 Nên 1356 : 3 = 452
6, Chia hết cho 10 (Nghĩa là chia hết cho 2 và 5): Các số tròn chục (có hàng đơn vị bằng 0) thì chia hết cho 10.
VD: 130; 2790
7, Chia hết cho 11: Xét tổng các chữ số ở hàng chẵn bằng tổng các chữ số ở hàng lẻ thì số đó chia hết cho 11.
VD: Cho số 48279
Ta có 4 + 2 + 9 = 8 + 7 = 15 Nên 48279 : 11 = 4389
8, Chia hết cho 15 (Nghĩa là chia hết cho 3 và 5): Các số có chữ số hàng đơn vị là 0 (hoặc 5) và tổng các chữ số chia hết cho 3 thì chia hết cho 15.
VD: Cho số 5820
Ta có 5 + 8 + 2 + 0 = 15; 15 : 3 = 5 Nên 5820 : 15 = 388
9, Chia hết cho 36 (Nghĩa là chia hết cho 4 và 9): Các số có hai chữ số tận cùng chia hết cho 4 và tổng các chữ số chia hết cho 9 thì chia hết cho 36.
VD: Cho số: 45720
Ta có 20 : 4 = 5 và (4 + 5 + 7 + 2 + 0) = 18
18 : 9 = 2 Nên 45720 : 36 = 1270
F. Toán Trung bình cộng
1. Muốn tìm trung bình cộng (TBC) của nhiều số, ta tính tổng của các số đó rồi chia tổng đó cho số các số hạng.
CTTQ: TBC = tổng các số : số các số hạng
2. Tìm tổng các số: ta lấy TBC nhân số các số hạng
CTTQ: Tổng các số = TBC × số các số hạng
Tìm hai số khi biết tổng và hiệu của hai số đó
Cách 1:
Tìm số lớn = (Tổng + hiệu) : 2
Tìm số bé = số lớn - hiệu
hoặc số bé = tổng - số lớn
Cách 2:
Tìm số bé = (tổng - hiệu) : 2
Tìm số lớn = số bé + hiệu
hoặc số lớn = tổng - số bé
Tìm hai số khi biết tổng và tỉ số của hai số đó
Cách làm:
Bước 1: Tìm tổng số phần bằng nhau = Lấy số phần số lớn + số phần số bé
Bước 2: Tìm số bé = Lấy tổng : tổng số phần bằng nhau × số phần số bé
Bước 3: Tìm số lớn = lấy tổng – số bé
Tìm hai số khi biết hiệu và tỉ số của hai số đó
Cách làm:
Bước 1: Tìm hiệu số phần bằng nhau = Lấy số phần số lớn - số phần số bé
Bước 2: Tìm số bé = Lấy hiệu : hiệu số phần bằng nhau × số phần số bé
Bước: Tìm số lớn = Lấy hiệu + số bé
G. Toán tỉ lệ thuận
1. Khái niệm: Hai đại lượng tỉ lệ thuận khi đại lượng này tăng (hoặc giảm) bao nhiêu lần thì đại lượng kia cũng tăng (hoặc giảm) đi bấy nhiêu lần.
2. Bài toán mẫu: Một ô tô trong hai giờ đi được 90km. Hỏi trong 4 giờ ô tô đó đi được bao nhiêu ki- lô- mét?
Tóm tắt:
2 giờ: 90 km
4 giờ: … km?
Bài giải
Cách 1:
Trong một giờ ô tô đi được là:
90 : 2 = 45 (km) (*)
Trong 4 giờ ô tô đi được là:
45 × 4 = 180 (km)
Đáp số: 180 km
Cách 2:
4 giờ gấp 2 giờ số lần là:
4 : 2 = 2 (lần) (**)
Trong 4 giờ ô tô đi được là:
90 × 2 = 180 (km)
Đáp số: 180 km
(*) Bước này là bước “ rút về đơn vị” (**) Bước này là bước “ tìm tỉ số”
H. Toán tỉ lệ nghịch
1. Khái niệm: Hai đại lượng tỉ lệ nghịch khi đại lượng này tăng (hoặc giảm) bao nhiêu lần thì đại lượng kia lại giảm (hoặc tăng) bấy nhiêu lần.
2. Bài toán mẫu: Muốn đắp xong nền nhà trong hai ngày, cần có 12 người. Hỏi muốn đắp xong nền nhà đó trong 4 ngày thì cần có bao nhiêu người? (Mức làm của mỗi người như nhau)
Tóm tắt:
2 ngày: 12 người
4 ngày: …. người?
Bài giải
Cách 1:
Muốn đắp xong nền nhà trong 1 ngày, cần số người là:
12 × 2 = 24 (người) (*)
Muốn đắp xong nền nhà trong 4 ngày, cần số người là:
24 : 4 = 6 (người)
Đáp số: 6 người
(*) Bước này là bước “ rút về đơn vị”
Cách 2:
4 ngày gấp 2 ngày số lần là:
4 : 2 = 2 (lần) (**)
Muốn đắp xong nền nhà trong 4 ngày, cần số người là:
12 : 2 = 6 (người)
Đáp số: 6 người
(**) Bước này là bước “ tìm tỉ số”
I. Tìm phân số của một số
KL: muốn tìm phân số của một số, ta lấy số đó nhân với phân số đã cho.
Công thức tổng quát: giá trị a/b của A = A × a/b
VD: Trong rổ có 12 quả cam. Hỏi 2/3 số cam trong rổ là bao nhiêu?
Giải
2/3 Số cam trong rổ là:
12 × 2/3 = 8 (quả)
ĐS: 8 quả
K. Tìm một số biết giá trị phân số của số đó
KL: Muốn tìm một số khi biết một giá trị phân số của số đó, ta lấy giá trị đó chia cho phân số.
CTTQ:
Giá trị a/b của A = giá trị của phân số : a/b
VD: Cho 2/3 số cam trong rổ cam là 8 quả. Hỏi rổ cam đó có bao nhiêu quả?
Giải
Số cam trong rổ là:
8 : 2/3 = 12 (quả)
ĐS: 12 quả
L. Tỉ số phần trăm
1. Tìm tỉ số phần trăm của hai số: ta làm như sau:
- Tìm thương của hai số đó dưới dạng số thập phân.
- Nhân thương đó với 100 và viết thêm kí hiệu phần trăm (%) vào bên phải tích tìm được.
CTTQ: a : b = T (STP) = STP × 100 (%)
VD: Tìm tỉ số phần trăm của 315 và 600
Giải
Tỉ số phần trăm của 315 và 600 là:
315 : 600 = 0,525 = 52,5 %
ĐS: 52,5 %
2. Tìm giá trị phần trăm của một số cho trước: ta lấy số đó chia cho 100 rồi nhân với số phần trăm hoặc lấy số đó nhân với số phần trăm rồi chia cho 100.
CTTQ: Giá trị % = Số A : 100 × số % hoặc Giá trị % = Số A × số % : 100
VD: Trường Đại Từ có 600 học sinh. Số học sinh nữ chiếm 45% số học sinh toàn trường. Tính số học sinh nữ của trường.
Giải
Số học sinh của trường đó là:
600 : 100 × 45 = 270 (học sinh)
ĐS: 270 học sinh
3. Tìm một số biết giá trị phần trăm của số đó: ta lấy giá trị phần trăm của số đó chia cho số phần trăm rồi nhân với 100 hoặc ta lấy giá trị phần trăm của số đó nhân với 100 rồi chia cho số phần trăm.
CTTQ: Số A = Giá trị % : số phần trăm × 100 hoặc Số A = Giá trị % × 100 : số phần trăm
VD: Tìm một số biết 30% của nó bằng 72.
Giải
Giá trị của số đó là:
72 : 30 × 100 = 240
ĐS: 240