Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{3}=\frac{9}{2}\)
\(\left(x+1\right).2=9.3\)
\(\left(x+1\right).2=27\)
\(x+1=27:2\)
\(x+1=13,5\)
\(x=13,5-1=12,5\)
vậy x = 12.5
\(\frac{x+1}{3}=\frac{9}{2}\)
\(\Leftrightarrow2\left(x+1\right)=3\times9\)
\(\Leftrightarrow2\left(x+1\right)=27\)
\(\Leftrightarrow x+1=\frac{27}{2}\)
\(\Leftrightarrow x=\frac{25}{2}\)
\(b,\left(2\chi-7\right)^{4-1}=4^{2\times5}\)\(a,3\times2^{\chi-7}=17\)
a) \(3.2^x-7=17\)
\(3\cdot2^x=24\)
\(2^x=8=2^3\)
=> x = 3
b) \(\left(2x-7\right)^4-1=4^2\cdot5\)
\(\left(2x-7\right)^4-1=80\)
\(\left(2x-7\right)^4=81=\left(\pm3\right)^4\)
+) 2x - 7 = 3
2x = 10
x = 5
+) 2x - 7 = -3
2x = 4
x = 2
Vậy,...........
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(=1-\frac{1}{11}=\frac{10}{11}\)
\(\Rightarrow A=\frac{5}{11}\)
\(2B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}=\frac{2018}{2019}\Rightarrow B=\frac{1009}{2019}\)
\(\frac{2}{7}C=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}=\frac{2018}{2019}\Rightarrow C=\frac{2018}{2019}:\frac{2}{7}=\frac{7063}{2019}\)
Bài 1: Tính nhanh:
A = 3/1*2 + 3/2*3 + 3/3*4 + ... + 3/399*400
=>3A = 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/399*400
3A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/399 - 1/400
3A = 1 - 1/400
3A = 400/400 - 1/400
3A = 399/400
A = 399/400 : 3
A = 399/400 . 1/3
A = 133/400.
Có gì ko hiểu bn ib mk nha.^^
\(A=\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{399.400}\)
\(A=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{399.400}\right)\)
\(A=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{399}-\frac{1}{400}\right)\)
\(A=3.\left(1-\frac{1}{400}\right)\)
\(A=3.\frac{399}{400}\)
\(A=\frac{1197}{400}\)
\(B=\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{399.400}\)
\(B=5.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{399.400}\right)\)
\(B=5.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{399}-\frac{1}{400}\right)\)
\(B=5.\left(1-\frac{1}{400}\right)\)
\(B=5.\frac{399}{400}\)
\(B=\frac{399}{80}\)
\(C=\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{149.151}\)
\(C=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{149}-\frac{1}{151}\)
\(C=\frac{1}{5}-\frac{1}{151}\)
\(C=\frac{146}{755}\)
\(D=\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}+...+\frac{3}{149.151}\)
\(D=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{149.151}\right)\)
\(D=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{149}-\frac{1}{151}\right)\)
\(D=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{151}\right)\)
\(D=\frac{3}{2}.\frac{146}{755}\)
\(D=\frac{219}{755}\)
\(E=\frac{11}{1.3}+\frac{11}{3.5}+\frac{11}{5.7}+...+\frac{11}{99.101}\)
\(E=\frac{11}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(E=\frac{11}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(E=\frac{11}{2}.\left(1-\frac{1}{101}\right)\)
\(E=\frac{11}{2}.\frac{100}{101}\)
\(E=\frac{550}{101}\)
_Chúc bạn học tốt_
\(\left(x-1\right)^x=10^{11}\)
\(\Leftrightarrow\left(x-1\right)^x=\left(11-1\right)^{11}\)
\(\Rightarrow x=11\)
\(\frac{3}{7.10}+\frac{3}{10.13}+....+\frac{3}{100.103}\)
\(=\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+....+\frac{1}{100}-\frac{1}{103}\)
\(=\frac{1}{7}-\frac{1}{103}\)
\(=\frac{96}{721}\)
\(\frac{2}{7.10}+\frac{2}{10.13}+...+\frac{2}{100.103}\)
\(=\frac{2}{3}\left(\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(=\frac{2}{3}\left(\frac{1}{7}-\frac{1}{103}\right)\)
\(=\frac{2}{3}.\frac{96}{721}\)
\(=\frac{64}{721}\)
\(A=\)\(\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{100.103}\)
\(A=\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{100}-\frac{1}{103}\)
\(A=\frac{1}{7}-\frac{1}{103}\)
\(A=\frac{96}{721}\)
\(B=\frac{2}{7.10}+\frac{2}{10.13}+...+\frac{2}{100.103}\)
\(B=2\left(\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{100.103}\right)\)
\(3B=2.3\left(\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{100.103}\right)\)
\(3B=2\left(\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{100.103}\right)\)
\(3B=2\left(\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(3B=2\left(\frac{1}{7}-\frac{1}{103}\right)\)
\(3B=2.\frac{96}{721}\)
\(3B=\frac{192}{721}\)
\(\Rightarrow B=\frac{192}{721}:3\)
\(B=\frac{64}{721}\)
\(A=\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{100.103}\)
\(A=\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{100}-\frac{1}{103}\)
\(A=\frac{1}{7}-\frac{1}{103}\)
\(A=\frac{96}{721}\)
Vậy \(A=\frac{96}{721}\)
\(B=\frac{2}{7.10}+\frac{2}{10.13}+...+\frac{2}{100.103}\)
\(B=\frac{2}{3}.\left(\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{100.103}\right)\)
\(B=\frac{2}{3}.\left(\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(B=\frac{2}{3}.\left(\frac{1}{7}-\frac{1}{103}\right)\)
\(B=\frac{2}{3}.\frac{96}{721}\)
\(B=\frac{64}{721}\)
Vậy \(B=\frac{64}{721}\)
_Chúc bạn học tốt_
ko bít
ko bít thì ko cần trả lời