Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bất đẳng thức Bunhiacốpxki ta có \(\sqrt{k}+\sqrt{n+1-k}\le\sqrt{\left(1+1\right)\left(k+n+1-k\right)}=\sqrt{2\left(n+1\right)}\) với mỗi \(k=1,2,\ldots,n\) . Thay các giá trị \(k=1,2,\ldots,n\) rồi cộng lại ta được
\(2\left(\sqrt{1}+\sqrt{2}+\cdots+\sqrt{n}\right)\le n\cdot\sqrt{2\left(n+1\right)}\to\sqrt{1}+\sqrt{2}+\cdots+\sqrt{n}\le n\cdot\sqrt{\frac{n+1}{2}}.\)
\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}-1\left(đk:x\ge1\right)\)
\(< =>\sqrt{x-2\sqrt{x-1}}^2=\left(\sqrt{x-1}-1\right)^2\)
\(< =>x-2\sqrt{x-1}=x-1+1-2\sqrt{x-1}\)
\(< =>x-2\sqrt{x-1}+2\sqrt{x-1}=x< =>x=x\)
Vậy phương trình trên thỏa mãn với mọi \(x\ge1\)
ĐKXĐ : \(x\ge1\)
Bình phương 2 vế lên ta có :
\(x-2\sqrt{x-1}=\left(\sqrt{x-1}-1\right)^2\)
\(\Leftrightarrow x-2\sqrt{x-1}=x-1-2\sqrt{x-1}+1\)
\(\Leftrightarrow x-2\sqrt{x-1}=x-2\sqrt{x-1}\)
\(\Leftrightarrow0x=0\)( luôn đúng với mọi \(x\ge1\))
Vậy ...............
\(\int^{\frac{1}{x}+\frac{1}{y}=\frac{1}{12}}_{\frac{9}{x}+\frac{6}{y}=\frac{3}{4}}\) đặt 1/x=a 1/y=b
hệ pt trở thành \(\int^{a+b=\frac{1}{12}}_{9a+6b=\frac{3}{4}}\)
đến đây bấm máy hoặc giải ra là được
Bạn không được đăng những câu hỏi không liên quan đến toán trên hỏi đáp
mik ms tham ra nên k bik nhiều mong mn tha lỗi Nguen Thang Hoang
cái đó là cái gì vậy bn mà bn vi phạm nội quy rồi nha nếu chưa đc đọc thì đọc đi nè:
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.