Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)
Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)
Vậy MinA = 11 khi -2 =< x =< 9
b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)
Dấu "=" xảy ra khi x = 1
Vậy MaxB = 3/4 khi x=1
Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)
Vậy \(A_{min}=11\) khi \(2\le x\le9\)
a) 5x . ( 53) 2 = 625
5x . 56 = 625
mà 625 = 54
Suy ra : x + 6 = 4
x = 4 - 6
x = -2
b) (-3/4 )3x - 1 = 256/81
(-3/4 )3X - 1 = (-3/4)-4
SUY RA : 3X - 1 = -4
3X = -4 + 1 = -3
X = -3 : 3
X = -1
C ) (8x - 1 )2n+1 = 52n+1
SUY RA : 8X - 1 = 5
8X = 5 + 1
8 X = 6
X = 6 : 8
X = 3/4
d) (x - 2/9 )2 = 4/9
mà 4/9 = 2/32
SUY RA : x - 2/9 = 2/3
x = 2/3 + 2/9
x = 24/27
Câu e mình không bít làm bn chịu khó suy nghĩ nha !
chỉnh đề B
\(B=x^5-15x^4+16x^3-29x^2+13x\)
\(=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3+\left(2x+1\right)x^2+\left(x-1\right)x\)
\(=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)
\(=-x=-14\)
1) \(A=\left(2x^2+1\right)^4-3\ge0-3=-3\) (do \(\left(2x^2+1\right)^4\ge0\forall x\))
Dấu "=" xảy ra \(\Leftrightarrow\left(2x^2+1\right)=0\Leftrightarrow2x^2=-1\Leftrightarrow x^2=-\frac{1}{2}\) (vô lí)
Vậy đề sai ~v (hay là tui làm sai ta)