Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left[x+y\right]=\left[\left[x\right]+\left\{x\right\}+\left[y\right]+\left\{y\right\}\right]\)
\(\left[x+y\right]=\left[x\right]+\left[y\right]+\left\{x\right\}+\left\{y\right\}\)
Với {} là phần lẻ.(áp dụng \(x=\left[x\right]+\left\{x\right\}\))
\(\Rightarrow\left[x\right]+\left[y\right]\le\left[x+y\right]\)
Dấu"=" sảy ra khi và chỉ khi x;y là số nguyên.
Chúc bạn học tốt!!!
Theo đề bài ta có:
\(\left[x\right]\le x\)
\(\left[y\right]\le y\)
Nên \(\left[x\right]+\left[y\right]\le x+y\)
Mà: phần một số phần có thể bù nhau thành 1 số mới lớn hơn số ban đầu
Nên:
\(\left[x\right]+\left[y\right]\le\left[x+y\right]\)
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Đặt \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow x=2k\)
\(y=4k\)
\(z=5k\)
\(\Rightarrow M=\frac{5x-2y+4z}{x+3y-5z}\)
\(=\frac{5\cdot2k-2\cdot4k+4\cdot5k}{2k+3\cdot4k-5\cdot5k}\)
\(=\frac{10k-8k+20k}{2k+12k-25k}\)
\(=\frac{2k\left(5-4+10\right)}{k\left(2+12-25\right)}\)
\(=\frac{2k\cdot11}{k\cdot\left(-11\right)}\)
\(=-2\)
\(x< y\Leftrightarrow\frac{a}{m}< \frac{b}{m}\Rightarrow\frac{a}{2m}< \frac{b}{2m}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{2a}{2m}< \frac{a+b}{2m}\\\frac{a+b}{2m}< \frac{2b}{2m}\end{cases}}\)\(\Rightarrow\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)
\(\Rightarrow x< z< y\)
DO x^4;3x^2 lớn hơn hoặc = 0( bn tự viết dấu) vs mọi x => x^4 + 3x^2 + 3 lớn hơn hoặc = 0 vs mọi x => P(x) = ... vô nghiệm
Bạn nào biết giải thì comment nhanh lên ạ . Ai comment nhanh nhất thì mình sẽ k cho ( nhưng phải hợp lý một chút ạ )
Tính độ dài OM dùng định lý Pytago : \(OM^2=3^2+1^2\)
Từ đó tính ra OM. Mình làm sai à?
P=x3+x2y-2x2-y(x+y)+3y+x+2018
P=x2.(x+y-2)-y.(x+y)+3y+x+2018
Thay x+y=2 vào P ta có :
P=x2.(2-2)-2y+3y+x+2018
P=0.x2+y+x+2018
P=0+2+2018(x+y=2)
P=2020
Vậy với x+y=2 thì P=2020
Mik tham khảo thêm ở bài bạn này nha https://olm.vn/hoi-dap/detail/102286367829.html
a﴿ Cả 2 vế không âm nên Bình phương 2 vế ta được:
|x + y|2 ≤ ﴾|x| + |y|﴿2
<=> ﴾x+y﴿﴾x+y﴿ ≤ ﴾|x| + |y|﴿. ﴾|x| + |y|﴿
<=> x2 + 2xy + y2 ≤ x2+ 2.|x||y| + y2
<=> xy ≤ |xy| Điều này luôn đúng với mọi x; y
Vậy bất đẳng thức đã cho đúng. Dấu "= " khi |xy| = xy <=> x; y cùng dấu
Với mọi x,y thuộc Q ta luôn có x bé hơn hoặc bằng |y| và -y
=> x+ybes hơn hoặc bằng |x|+|y| và - x-ybes hơn hoặc bằng |x|+|y| hay x+y lớn hơn hoặc bằng -(|x|+|y|)
Do đó -(|x|+|y|) <_ x+y <_ |x|+|y|
Vậy (x+y) lớn hơn hoặc bằng |x|+|y|