Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1
\(3^{39}<3^{42}=3^{2\times21}=\left(3^2\right)^{21}=9^{21}<11^{21}\)
\(\Rightarrow\) 339<1121
Tick nha
3^39 và 11^21
3^39<3^40=(3^2)^20=9^20(1)
11^20<11^21(2)
9^20<11^20(3)
Từ (1);(2) và (3) => 3^39<9^20<11^20<11^21
=> 3^39<11^21
Vậy......
333^444 và 444^333
333^444=(333^4)^111=12296370321^111(1)
444^333=(444^3)^111=87528384^111(2)
Từ (1) và (2) =>333^444<444^333
Vậy...........
\(3^{2^{3^2}}=9^6\)
\(2^{3^{2^3}}=8^6\)
Vì \(9^6>8^6\)
\(\Rightarrow3^{2^{3^2}}>2^{3^{2^3}}\)
3^2^3^2<2^3^2^3
chắc zậy mà mink cũng ko chắc đâu nha!!!
a)1714>1614=256>3211=222>3111
b)102330<102430=2300<2305=3261<3361
c)8217>8117=368>363=2721>2621
(x-3)^11=(x-3)^7
(x-3)^11-(x-3)^7=0
(x-3)^7[(x-3)^4-1)]=0
\(\Rightarrow\orbr{\begin{cases}\left(x-3\right)^7=0\\\left(x-3\right)^4-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x-3=0\\\left(x-3\right)^4=1\end{cases}}\)\(\Rightarrow\)x=3; x=2; x=4
Vậy x=3 hoặc x=2 hoặc x=4
Ta có (x-3)^11 = (x-3)^7
<=> \(\hept{\begin{cases}x-3=0\\x-3=1\\x-3=-1\end{cases}}\)
<=> \(\hept{\begin{cases}x=3\\x=4\\x=2\end{cases}}\)
Tính bằng cách phân tích ra :
\(^{3^{99}=\left(3^{33}\right)^3}\)
\(11^{21}=\left(11^7\right)^3\)
Ta có :
\(3^{99}=\left(3^{33}\right)^3\)
\(11^{21}=\left(11^7\right)^3\)
Vì cùng có số mũ là 3
Mà : \(3^{33}>11^7\Rightarrow3^{99}>11^{21}\)
Vậy :\(3^{99}>11^{21}\)