K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

2.1

a) Áp dụng định lý Bezout:

\(P\left(x\right)⋮2x+3\)

\(\Rightarrow P\left(\frac{-3}{2}\right)=0\)

hay \(6.\frac{-27}{8}-7.\frac{9}{4}-16.\frac{-3}{2}+m=0\)

\(\Leftrightarrow\frac{-81}{4}-\frac{63}{4}+24+m=0\)

\(\Rightarrow m=12\)

Vậy m = 12 

13 tháng 8 2017

Bài 1:

a, \(A=x\left(6-x\right)+74+x=-x^2+6x+74+x=-x^2+7x+74\)

\(=-\left(x^2-2\cdot x\cdot3,5+\dfrac{49}{4}\right)+\dfrac{345}{4}\)

\(=-\left(x-3,5\right)^2+\dfrac{345}{4}\)

Có: \(-\left(x-3,5\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-3,5\right)^2+\dfrac{345}{4}\le\dfrac{345}{4}\)

Dấu ''='' xảy ra khi x = 3,5

Vậy A_max = \(\dfrac{345}{4}\) khi x = 3,5

b, \(B=5x-x^2=-x^2+5x-\dfrac{25}{4}+\dfrac{25}{4}\)

\(=-\left(x^2-2\cdot x\cdot2,5+\dfrac{25}{4}\right)+\dfrac{25}{4}\)

\(=-\left(x-2,5\right)^2+\dfrac{25}{4}\)

Có: \(-\left(x-2,5\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2,5\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)

Dấu ''='' xảy ra khi x = 2,5

Vậy B_max = \(\dfrac{25}{4}\) khi x = 2,5

13 tháng 8 2017

Bài 2:

a, m = 12 (cái này dùng máy tính mà bấm, nhanh gọn lẹ)

b, Không đặt phép tính đc, vs lại ý này dễ, tính tay --> r = 0

c, \(P\left(x\right)=6x^3-7x^2-16x+12\)

\(=6\left(x+\dfrac{3}{2}\right)\left(x-2\right)\left(x-\dfrac{2}{3}\right)\)

\(=\left(2x+3\right)\left(x-2\right)\left(3x-2\right)\)

7 tháng 11 2016

a) 3x3-2x2+2 chia x+1= 3x2-5x+5 dư -3 b) -3 chia hết x+1 vậy chon x =2

10 tháng 11 2017

1)

a) \(-7x\left(3x-2\right)\)

\(=-21x^2+14x\)

b) \(87^2+26.87+13^2\)

\(=87^2+2.87.13+13^2\)

\(=\left(87+13\right)^2\)

\(=100^2\)

\(=10000\)

2)

a) \(x^2-25\)

\(=x^2-5^2\)

\(=\left(x-5\right)\left(x+5\right)\)

b) \(3x\left(x+5\right)-2x-10=0\)

\(\Leftrightarrow3x\left(x+5\right)-\left(2x-10\right)=0\)

\(\Leftrightarrow3x\left(x+5\right)-2\left(x-5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\3x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\3x=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{2}{3}\end{matrix}\right.\)

Vậy..........

3)

a) \(A:B=\left(3x^3-2x^2+2\right):\left(x+1\right)\)

Đại số lớp 8

Vậy \(\left(3x^3-2x^2+2\right):\left(x+1\right)=\left(3x^2-5x-5\right)+7\)

b)

Để \(A⋮B\Rightarrow7⋮\left(x+1\right)\)

\(\Rightarrow\left(x+1\right)\in U\left(7\right)=\left\{-1;1-7;7\right\}\)

Đại số lớp 8

Vì x là số nguyên nên x=0 ; x=6 thì \(A⋮B\)

7 tháng 11 2016

C1

a) -7x(3x-2)=-21x^2+14x

b) 87^2+26.87+13^2=87^2+2.13.87+13^2=(87+13)^2=100^2

C2

a) (x-5)(x+5)

b)3x(x+5)-2(x+5)=(3x-2)(x+5)=0

\(\Rightarrow\left[\begin{array}{nghiempt}3x-2=0\\x+5=0\end{array}\right.\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{2}{3}\\x=-5\end{array}\right.\)

Vậy S={-5;2/3}

C3:

a)3x^3-2x^2+2=(x+1)(3x^2-5x-5)-3

b) Để A chia hết cho B=> x+1\(\inƯ\left(-3\right)\)

\(\Rightarrow\begin{cases}x+1=3\\x+1=-3\\x+1=1\\x+1=-1\end{cases}\)\(\Rightarrow\begin{cases}x=2\\x=-4\\x=0\\x=-2\end{cases}\)

29 tháng 5 2018

a) Ta có: P(x) = 3y + 6 có nghiệm khi

3y + 6 = 0

3y = -6

y = -2

Vậy đa thức P(y) có nghiệm là y = -2.

b) Q(y) = y4 + 2

Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y

Nên y4 + 2 có giá trị lớn hơn 0 với mọi y

Tức là Q(y) ≠ 0 với mọi y

Vậy Q(y) không có nghiệm.

NV
17 tháng 6 2019

a/ \(2x+3=0\Rightarrow x=-\frac{3}{2}\)

Để \(P\left(x\right)⋮\left(2x+3\right)\Leftrightarrow P\left(-\frac{3}{2}\right)=0\)

\(\Leftrightarrow m-12=0\Rightarrow m=12\)

\(\Rightarrow P\left(x\right)=6x^3-7x^2-16x+12\)

b/ \(3x-2=0\Rightarrow x=\frac{2}{3}\)

\(P\left(\frac{2}{3}\right)=0\)

\(\Rightarrow P\left(x\right)⋮\left(3x-2\right)\) dư 0 hay \(P\left(x\right)\) chia hết \(3x-2\)

\(6x^3-7x^2-16x+12=\left(2x+3\right)\left(3x-2\right)\left(x-2\right)\)

3 tháng 3 2020

a/\(P\left(x\right)=\left(6x^3+9x^2\right)-\left(16x^2+24x\right)+\left(8x+m\right)\)

\(\Leftrightarrow P\left(x\right)=3x^2\left(2x+3\right)-8x\left(2x+3\right)+\left(8x+m\right)⋮2x+3\)

\(\Rightarrow8x+m⋮2x+3\). Chỉ có thể \(8x+m=4\left(2x+3\right)\Rightarrow m=12\)

b/Áp dụng Betzout ta có

\(x=\frac{2}{3}\) là nghiệm của đa thức chia nên \(P\left(\frac{2}{3}\right)=r\) ( với r là đa thức bậc 0, vì đa thức chia bậc 1). Thế x=2/3 đc dư

-\(P\left(x\right)=3x^2\left(2x+3\right)-8x\left(2x+3\right)+4\left(2x+3\right)=\left(2x+3\right)\left(3x^2-8x+4\right)=\left(2x+3\right)\left(3x\left(x-2\right)-2\left(x-2\right)\right)=\left(2x+3\right)\left(3x-2\right)\left(x-2\right)\)

5 tháng 3 2020

Ta nhận thấy quy luật \(P\left(1\right)=1,P\left(2\right)=4,P\left(4\right)=16,P\left(5\right)=25\Rightarrow P\left(x\right)=x^2\)

Vậy \(P\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-4\right)\left(x-5\right)+x^2\)

Thay x=6,7 rồi tính

29 tháng 12 2021

a: \(=x^2-1-x^2-x+6=-x+5\)

\(\dfrac{A}{B}=\dfrac{6x^3+3x^2-10x^2-5x+4x+2+m-2}{2x+1}\)

\(=3x^2-5x+2+\dfrac{m-2}{2x+1}\)