K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

b2 :

a, xét tam giác ABD và tam giác ACE có: góc A chung

AB = AC do tam giác ABC cân tại A (gt)

góc ADB = góc AEC = 90

=> tam giác ABD = tam giác ACE (ch-cgv)

b, tam giác ABD = tam giác ACE (câu a)

=> góc ABD = góc ACE (đn)

góc ABC = góc ACB do tam giác ABC cân tại A (gt)

góc HBC = góc ABC - góc ABD

góc HCB = góc ACB - góc ACE 

=> góc HBC = góc HCB 

=> tam giác HBC cân tại H (Dh)

còn câu 1

21 tháng 12 2021

bài 2:

ta có: AB<AC<BC(Vì 3cm<4cm<5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

15 tháng 2 2022

bài 2:

ta có: AB <AC <BC (Vì 3cm <4cm <5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

HT mik làm giống bạn Dương Mạnh Quyết

20 tháng 2 2020

GIÚP MÌNH VỚI CÁC BẠN ƠI!!!

ARIGATO!!!

9 tháng 5 2016

áp dụng định lý Pi-ta-go vào tam giác ABC vuông tại A có:

\(BC^2=AB^2+AC^2\)

\(BC^2-AB^2=AC^2\)

\(15^2-9^2=AC^2\)

\(144=AC^2\)

\(AC=12\)(cm)

b)Có BC<AC<AB

=>A<B<C

c) xét tam giác CAB và tam giác CAD có :

CA chung

DA=AB

 góc CAB= gócCAD=90 độ

=>tam giác CAB=tam giác CAD(2 cạnh góc vuông)

=>CB=CD(2 cạnh tương ứng )

=>tam giác BCD cân

d) vì  A là trung điểm BD=>DA=DB=>CA là đường trung tuyến DB (1)

có K là trung điểm cạnh BC=>KB=KC=\(\frac{1}{2}\)BC=\(\frac{15}{2}\)=7,5 (cm) (2)

Từ (1) và(2)=>CA =CK=7,5(cm)(trong 1 tam giác vuông đường trung tuyến bằng 1 nửa cạnh huyền)

Từ (1) =>CM=\(\frac{2}{3}\)CA

         =>CM=\(\frac{2}{3}\times7,5\)

        =>CM=5(cm) 

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.5. Cho tam giác ABC, biết...
Đọc tiếp

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .

2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.

3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.

4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.

5. Cho tam giác ABC, biết BC bằng 52cm, AB = 20cm ,AC=48 cm.

a, Chứng minh tam giác ABC vuông ở A;

b, Kẻ AH vuông góc với BC. Tính AH .

6. Cho tam giác vuông cân ABC, A=90.Qua A kẻ đường thẳng d tùy ý. Từ B và C kẻ BH vuông d. Chứng minh rằng tổng BH^2+CK^2 ko phụ thuộc vào vị trí của đường thẳng d. 

7. Cho tam giác vuông ABC ,A= 90 độ. Trên nửa mặt phẳng bờ AC không chứa điểm B, kẻ tia CX sao cho CA là tia phân giác của gócBCx.Từ A kẻ AE vuông Có, từ B kẻ BD vuông AE. Gọi AH là đường cao của tam giác ABC. Chứng minh rằng :

a, A là trung điểm của DE 

b, DHE=90 độ 

8. Cho tam giác ABC có A bằng 90 độ,AB=8 cm,BC =17cm.Trên nửa mặt phẳng bờ AC ko chứa điểm B, vẽ tia CD vuông với AC và CD=36cm.Tính tổng độ dài các đoạn thẳngAB+BC+CD+DA. 

4

Bài 1:

A C B

Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)

Độ dài cạnh AC: 28 - 7 = 21 (cm)

Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:

\(BC^2=AC^2+AB^2\)

Hay \(BC^2=21^2+28^2\)

\(\Rightarrow BC^2=441+784\)

\(\Rightarrow BC^2=1225\)

\(\Rightarrow BC=35\left(cm\right)\)

Bài 2:

A B C D

Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:

\(AB^2=AD^2+BD^2\)

\(\Rightarrow AD^2=AB^2-BD^2\)

Hay \(AD^2=17^2-15^2\)

\(\Rightarrow AD^2=289-225\)

\(\Rightarrow AD^2=64\)

\(\Rightarrow AD=8\left(cm\right)\)

Trong tam giác ABC có:

\(AD+DC=AC\)

\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)

Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:

\(BC^2=BD^2+DC^2\)

Hay \(BC^2=15^2+9^2\)

\(\Rightarrow BC^2=225+81\)

\(\Rightarrow BC^2=306\)

\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)

10 tháng 5 2019

a,XétΔABM và ΔACM có :

^AMB=^AMC(=90o)

AB=AC(GT)

AM :cạnh chung(gt)

Suy ra:ΔABM= ΔACM (ch-cgv)

=>MB=MC( 2 cạnh tương ứng)

b,Ta có MB=BC2 =242 = 12

Δ AMB vuông tại M có :

AM2+BM2=AB2 ( đl Pytago)

=>AM2=AB2−BM2

202−122

162

=>AM=16

###CÁC BẠN CÓ THỂ GIẢI GIÚP MÌNH 1 TRONG 5 BÀI TOÁN NÀY, NẾU BẠN NÀO BIẾT LÀM BÀI NÀO GIẢI GIÚP MÌNH NHANH NHÉ, KHÔNG CẦN VẼ HÌNH, CHỈ CẦN LÀM BƯỚC CHỨNG MINH LÀ ĐƯỢC, THANK YOU!!!!!!!!!!!!!!!!1) Cho góc xOy. Trên tia Ox lấy điểm A và trên tia đối của tia Oy lấy điểm B sao cho OA = OB. Chứng minh rằng AB song song với tia phân giác của góc xOy2) Cho tam giác ABC cân tại A. Trên cạnh BA lấy điểm D, sao...
Đọc tiếp

###CÁC BẠN CÓ THỂ GIẢI GIÚP MÌNH 1 TRONG 5 BÀI TOÁN NÀY, NẾU BẠN NÀO BIẾT LÀM BÀI NÀO GIẢI GIÚP MÌNH NHANH NHÉ, KHÔNG CẦN VẼ HÌNH, CHỈ CẦN LÀM BƯỚC CHỨNG MINH LÀ ĐƯỢC, THANK YOU!!!!!!!!!!!!!!!!

1) Cho góc xOy. Trên tia Ox lấy điểm A và trên tia đối của tia Oy lấy điểm B sao cho OA = OB. Chứng minh rằng AB song song với tia phân giác của góc xOy

2) Cho tam giác ABC cân tại A. Trên cạnh BA lấy điểm D, sao cho A là trung điểm của BD. Chứng minh rằng:

      - Góc BCD = góc ABC + góc ADC

      - Góc BCD = 90 độ

3) Cho tam giác ABC. Vẽ các tam giác đều ABD và ACE ra phía ngoài tam giác ABC. Nối BE và CD. Gọi M và N là trung điểm của BE và CD. Chứng minh tam giác AMN đều

4) Cho tam giác ABC cân, AB là cạnh đấy, góc C = 100 độ. Trên nửa mặt phẳng chứa điểm C, bờ là đường thẳng AB, dựng tia Ax tạo với AB một góc 30 độ và tia By tạo với BA một góc 20 độ. Hai tia Ax và By cắt nhau tại D. Tính góc ACD

5) Cho tam giác ABC cân tại A có góc A < 90 độ, kẻ BD vuông góc với AC. Trên cạnh AB lấy điểm E sao cho AE = AD. Chứng minh rằng:

      - DE song song với BD

      - CE vuông góc với AB

0
18 tháng 4 2016

Bạn tự vẽ hình nha!

a.

AB = AC (tam giác ABC cân tại A)

mà AB = 15 nên AC = 15

Tam giác ABC có:

AC < BC (15 < 18)

=> B < A (quan hệ giữa góc và cạnh đối diện)

b.

Xét tam giác ABH và tam giác ACH có:

A1 = A2 (AH là tia phân giác của BAC)

AB = AC (tam giác ABC cân tại A)

B = C (tam giác ABC cân tại A)

=> Tam giác ABH = Tam giác ACH (g.c.g)

c.

AH là tia phân giác của tam giác ABC cân tại A

=> AH là trung tuyến của tam giác ABC

mà BD là trung tuyến của tam giác ABC

=> G là trọng tâm của tam giác ABC.

d.

AH là tia phân giác của tam giác ABC cân tại A

=> AH là trung trực của tam giác ABC

=> H là trung điểm của BC

=> BH = CH = BC/2 = 18/2 = 9

Áp dụng định lí Pytago vào tam giác ABH vuông tại H có:

AB^2  =  AH^2  +  BH^2

15^2   =  AH^2  +  9^2

AH     =     12

Ta có: 

AG = 2/3 AH (tính chất trọng tâm)

=> AG = 2/3 . 12 = 8

d.

G là trọng tâm của tam giác ABC

=> CE là trung tuyến của tam giác ABC

=> E là trung điểm của AB

=> AE = BE = AB/2

Ta có: AD = CD = AC/2 (BD là trung tuyến của tam giác ABC)

mà AB = AC (tam giác ABC cân tại A)

=> AE = AD 

Xét tam giác AEG và tam giác ADG có:

AE = AD (chứng minh trên)

A1 = A2 (AH là tia phân giác của tam giác ABC)

AG là cạnh chung

=> Tam giác AEG = Tam giác ADG