Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D E G M N H N P Q
Xét 4 tam giác: \(\Delta\)DQM,\(\Delta\)ENM,\(\Delta\)HNP,\(\Delta\)GQP lần lượt vuông tại:D,E,H,G:
DM=ME=HP=GP
QD=EN=NH=QG
=> \(\Delta\)DQM=\(\Delta\)ENM=\(\Delta\)HNP=\(\Delta\)GQP(hai cạnh góc vuông)
=>QM=MN=NP=QP( các cạnh tương ứng)
=> tứ giác MNPQ là hình thoi.
3
Có\(S_{GCBH}=a^2\)
\(S_{CDEA}=b^2\)
\(S_{BAKI}=c^{^2}\)
Áp dụng định lý Py ta go vào tam giác ABC
\(BC^{^2}=AB^2+AC^2\) hay \(a^2=b^2+c^2\)
Vậy Đpcm
Ta có: góc D = B
mà 2 góc này ở vị trí so le trong
=> ED//BC
Ta lại có: AH vuông góc BC
=> AH vuông góc ED
Hay AK vuông góc ED
Tam giác AKD vuông tại K
=> AD2 = AK2 + DK2
=> AD2 = 42 + 32
=> AD = 5 ( cm)
Mà: \(AD=\dfrac{1}{3}AB\Rightarrow AB=5.3=15\) cm
Xét tam giác AKD và tam giác AHB có:
góc KAD = HAB ( đối đỉnh)
góc AKD = AHB = 90o
Do đó: tam giác AKD~AHB( g.g)
=> \(\dfrac{AD}{AB}=\dfrac{DK}{BH}\Rightarrow BH=\dfrac{AB.DK}{AD}=\dfrac{15.3}{5}=9\)
uk đi đi cho đỡ tốn diện tích khi Nam đăg câu hỏi câu trả lời của Nam
a: Xét ΔACB và ΔEBC có
\(\widehat{ACB}=\widehat{EBC}\)
BC chung
\(\widehat{CBA}=\widehat{BCE}\)
Do đó:ΔACB=ΔEBC
b: ta có; ΔACB=ΔEBC
nên AC=EB
=>BE=BD
hay ΔBED cân tại B
c: Ta có: ΔBED cân tại B
nên \(\widehat{BDC}=\widehat{BEC}\)
=>\(\widehat{BDC}=\widehat{ACD}\)