Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Không giải được\(\sqrt{29}-6\sqrt{6}< 0\)
b. \(\left(\sqrt{8}-3\sqrt{2}-\sqrt{10}\right)\cdot\sqrt{2}-\sqrt{20}\)
=\(\left(2\sqrt{2}-3\sqrt{2}-\sqrt{10}\right)\cdot\sqrt{2}-\sqrt{20}\)
=\(\left(\sqrt{2}-\sqrt{10}\right)\cdot\sqrt{2}-\sqrt{20}\)
a) Không thể giải vì \(\sqrt{29}-6\sqrt{6}< 0\)
b) \(\left(\sqrt{8}-3\sqrt{2}-\sqrt{10}\right)\cdot\sqrt{2}-\sqrt{20}\)
=\(\left(2\sqrt{2}-3\sqrt{2}-\sqrt{10}\right)\cdot\sqrt{2}-\sqrt{20}\)
=\(\left(-\sqrt{2}-\sqrt{10}\right)\cdot\sqrt{2}-\sqrt{20}\)
=\(-2-2\sqrt{5}-2\sqrt{5}\)
=\(-2-4\sqrt{5}\)
=\(-2\left(1+2\sqrt{5}\right)\)
Gọi số cần tìm là ab điều kiện : a khác 0 ; a , b là chữ số
Theo bài ra , ta có :
a - b = 7 => a = b + 7
ab = ba x 3 + 5 => 10a + b = 30b + 3a + 5 => 7a = 29b + 5 => 7 x ( b + 7 ) 29b + 5 = 7b + 49 = 29b + 5 => 44 = 22b => b = 2
=> a = 7 + 2 = 9
Vậy số cần tìm là : 92
1: \(x^2-\left(m+1\right)x-2023=0\)
a=1; b=-(m+1); c=-2023
Vì \(a\cdot c=-2023< 0\)
nên phương trình luôn có hai nghiệm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left[-\left(m+1\right)\right]}{1}=m+1\\x_2\cdot x_1=\dfrac{c}{a}=-\dfrac{2023}{1}=-2023\end{matrix}\right.\)
\(\dfrac{1}{x_1-2023}+\dfrac{1}{x_2-2023}=1\)
=>\(\dfrac{x_2-2023+x_1-2023}{\left(x_1-2023\right)\left(x_2-2023\right)}=1\)
=>\(x_2+x_1-4046=\left(x_1-2023\right)\left(x_2-2023\right)\)
=>\(m+1-4046=x_1x_2-2023\left(x_1+x_2\right)+2023^2\)
=>\(m-4045=-2023-2023\left(m+1\right)+2023^2\)
=>\(m-4045=-2023-2023m-2023+2023^2\)
=>\(2024m=4092528\)
=>\(m=\dfrac{4092528}{2024}=2022\)