<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

Dễ quá bỏ qua

1 tháng 4 2017

âncsi hình sau mình nhìn muốn gãyy cổ rồi :v

26 tháng 11 2016

bạn chụp dọc đc hem, òi mắt mất

30 tháng 4 2017

đề 1 bài 4

xét tam gics ABC và tam giác HBA có

góc B chung

góc BAC = góc BHA (=90 độ)

=> tam giác ABC đồng dạng vs tam giác HBA (g.g)

=> AB/HB=BC/AB=> AB^2=HB *BC

áp dụng đl py ta go trog tam giác vuông ABC có

BC^2 = AB^2 +AC^2=6^2+8^2=100

=> BC =\(\sqrt{100}\)=10 cm

ta có tam giác ABC đồng dạng vs tam giác HBA (cm câu a )

=> AC/AH=BC/BA=>AH=8*6/10=4.8CM

=>AB/BH=AC/AH=> BH=6*4.8/8=3,6cm

=>HC =BC-BH=10-3,6=6,4cm

30 tháng 4 2017

dề 1 bài 1

5x+12=3x -14

<=>5x-3x=-14-12

<=>2x=-26

<=> x=-12

vạy S={-12}

(4x-2)*(3x+4)=0

<=>4x-2=0<=>x=1/2

<=>3x+4=0<=>x=-4/3

vậy S={1/2;-4/3}

đkxđ : x\(\ne2;x\ne-3\)

\(\dfrac{4}{x-2}+\dfrac{1}{x+3}=0\)

<=> 4(x+3)/(x-2)(x+3)+1(x-2)/(x-2)(x+3)

=> 4x+12+x-2=0

<=>5x=-10

<=>x=-2 (nhận)

vậy S={-2}

Bạn cần bài nào vậy bạn?

26 tháng 8 2017

Mik chịu thôi, bó tay.com.

26 tháng 8 2017

1 . 

Ta có AB = BC (gt)

Suy ra  ∆ABC cân

Nên ˆA1=ˆC1A1^=C1^  (1)

Lại có ˆA1=ˆA2A1^=A2^ (2) (vì AC là tia phân giác của ˆAA^)

Từ (1) và (2) suy ra ˆC1=ˆA2C1^=A2^

nên BC // AD (do ˆC1,ˆA2C1^,A2^ ở vị trí so le trong)

Vậy ABCD là hình thang

25 tháng 10 2017

Giup cai j ? Cau nao ?

25 tháng 10 2017

Đề số 3.

1.

a,\(4x\left(5x^2-2x+3\right)\)

\(=20x^3-8x^2+12x\)

b.\(\left(x-2\right)\left(x^2-3x+5\right)\)

\(=x^3-3x^2+5x-2x^2+6x-10\)

\(=x^3-5x^2+11x-10\)

c,\(\left(10x^4-5x^3+3x^2\right):5x^2\)

\(=2x^2-x+\dfrac{3}{5}\)

d,\(\left(x^2-12xy+36y^2\right):\left(x-6y\right)\)

\(=\left(x-6y\right)^2:\left(x-6y\right)\)

\(=x-6y\)

2.

a,\(x^2+5x+5xy+25y\)

\(=\left(x^2+5x\right)+\left(5xy+25y\right)\)

\(=x\left(x+5\right)+5y\left(x+5\right)\)

\(=\left(x+5y\right)\left(x+5\right)\)

b,\(x^2-y^2+14x+49\)

\(=\left(x^2+14x+49\right)-y^2\)

\(=\left(x+7\right)^2-y^2\)

\(=\left(x+7-y\right)\left(x+7+y\right)\)

c,\(x^2-24x-25\)

\(=x^2+25x-x-25\)

\(=\left(x^2-x\right)+\left(25x-25\right)\)

\(=x\left(x-1\right)+25\left(x-1\right)\)

\(=\left(x+25\right)\left(x-1\right)\)

3.

a,\(5x\left(x-3\right)-x+3=0\)

\(5x\left(x-3\right)-\left(x-3\right)=0\)

\(\left(5x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\end{matrix}\right.\)

Vậy \(x=\dfrac{1}{5}\) hoặc \(x=3\)

b.\(3x\left(x-5\right)-\left(x-1\right)\left(2+3x\right)=30\)

\(3x^2-15x-\left(2x+3x^2-2-3x\right)=30\)

\(3x^2-15x-2x-3x^2+2+3x=30\)

\(-14x+2=30\)

\(-14x=28\)

\(x=-2\)

c,\(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)

\(x^2+3x+2x+6-\left(x^2+5x-2x-10\right)=0\)

\(x^2+5x+6-x^2-5x+2x+10=0\)

\(2x+16=0\)

\(2x=-16\)

\(x=-8\)

Mình học chật hình không giúp bạn được.Xin lỗi!

11 tháng 12 2016

\(A=9x^2+4y^2+54x-36y-12xy+90\)

\(=\left(9x^2-12xy+4y^2\right)+\left(54x-36y\right)+90\)

\(=\left(3x-2y\right)^2+18\left(3x-2y\right)+90\) \(\left(1\right)\)

Đặt: \(3x-2y=t\) , khi đó (1) trở thành:

\(t^2+18t-90=\left(t^2+18t+81\right)+9=\left(t+9\right)^2+9\)

Vì: \(\left(t+9\right)^2\ge0\Rightarrow\left(t+9\right)^2+9\ge9\)

Vậy GTNN của A là 9 khi \(t+9=0\Leftrightarrow3x-2y+9=0\Leftrightarrow x=\frac{2y-9}{3}=\frac{2}{3}y-3\)

Khi đó \(a+b=\frac{2}{3}+\left(-3\right)=-\frac{7}{3}\)

12 tháng 12 2016

Cảm ơn nhiều nha bạn!

18 tháng 8 2017

23.27. \(x^2-y^2-2x+1\)

\(=\left(x-1\right)^2-y^2\)

\(=\left(x-1-y\right)\left(x-1+y\right)\)

23.25.

\(\left(x^2-4x\right)^2+\left(x-2\right)^2-10\)

\(=\left(x^2-4x\right)^2-4+\left(x-2\right)^2-6\)

\(=\left(x^2-4x+4\right)\left(x^2-4x-4\right)+x^2-4x+4-6\)

\(=\left(x^2-4x+4\right)\left(x^2-4x-10\right)\)

23.23

\(x^3-2x^2-6x+27\)

\(=\left(x^3+27\right)-2x\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-3x+9-2x\right)\)

\(=\left(x+3\right)\left(x^2-5x+9\right)\)

18 tháng 8 2017

23.27

\(x^2-y^2-2x+1\)

\(=\left(x^2-2x+1\right)-y^2\)

\(=\left(x-1\right)^2-y^2\)

\(=\left(x-1-y\right)\left(x-1-y\right)\)

15 tháng 10 2016

chảy nước miếng

mún lao vào ăn quá

15 tháng 10 2016

onl = điện thoại ak

7 tháng 7 2017

\(a,\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)

\(\Leftrightarrow4x^2+12x+9-4x^2+4=49\)

\(\Leftrightarrow12x=36\)

\(\Rightarrow x=3\)

b) \(16x^2-\left(4x-5\right)^2=15\)

\(\Rightarrow16x^2-16x^2+40x-25=15\)

\(\Rightarrow x=1\)

d) \(\left(2x+5\right)\left(8x-7\right)-\left(-4x-3\right)^2=16\)

\(\Leftrightarrow16x^2-14x+40x-35-16x^2+24x-9=16\)

\(\Leftrightarrow50x=60\)

\(\Rightarrow x=\dfrac{6}{5}\)

e) \(49x^2+12x+1=0\)

\(\Leftrightarrow7x+1=0\)

\(\Rightarrow x=\dfrac{-1}{7}\)

f) \(x^2+y^2-2x+4y+5=0\)

\(\Leftrightarrow x^2-2x+1+y^2+4x+5=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)