K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : 

\(n^2 - 1 = (n-1)(n+1)\)

\(n \) là nguyên tố lớn hơn \(3 \implies n-1;n+1\) là hai số chẵn liên tiếp 

\(=> (n-1)(n+1) \) chia hết cho \(8\)    \((1)\)

Vì \(n \) là nguyên tố lớn hơn 3 nên ta có : \(n = 3k +1 ; 3k +2\) \((2)\)

Với \(n= 3k + 1\)

\(=> (n-1)(n+1) = (3k+1-1)(n+1) = 3k(n+1) \) chia hết cho 3 

Với \(n = 3k+2\)

\(=> (n-1)(n+1) = (n-1)(3k+2+1) = (n-1)(k+1)3 \) chi hết cho 3

- Từ \((1) \),\((2)\) ta thấy \((n-1)(n+1) = n^2 -1\) chia hết cho cả \(8;3\)

\(=> n^2 - 1 \) chia hết cho \(24 (đpcm)\)

10 tháng 12 2015

Goi b la so nghuyen to lon hon 3  chia cho 3 xay ra 3 truong hop                                                                                                                 truong hop 1:b chia het cho 3 suy ra b khong phai la so nghuyen to    (khong duoc)                                                                                  truong hop 2 :b chia cho 3 du 1    (duoc                                                                                                                                                  truong hop 3:b cia cho 3 du 2     (duoc)

24 tháng 6 2022

b) vì p là số nguyên tố>3(gt)

=>p có dạng 3k+1 howacj 3k+2

Nếu p=3k+2

=> p+4=3k+6 ⋮ 3

mà p+4 là số nguyên tố>3(do p>3)

=>p+4=3k+6 không thỏa mãn p+4 là số nguyên tố

Nếu p=3k+1

=> p+4=3k+5 (hợp lí)

vậy p+8 là hợp số

=>p+8=3k+9 ⋮ 3

=>p+8 là hợp số

c)vì p là số nguyên tố>3(gt)

=>p lẻ =>(p-1)(p+1) là tích 2 số chẵn liên tiếp

g/s với kϵN ta có 2k(2k+2)là tích 2 chẵn liên tiếp

2k(2k+2)=4k(k+1)

với kϵN ta có k(k+1)là tích 2 số tự nhiên liên tiếp

=> k(k+1)⋮2

=>4k(k+1)⋮8

=>tích 2 số tự nhiên liên tiếp luôn chia hết cho 8

=>(p-1)(p+1) ⋮ 8 (1)

ta có p-1; p; p+1 là 3 số tự nhiên liên tiếp

=>(p-1)p(p+1)⋮3

mà p là số nguyên tố>3(gt) => p không chia hết cho 3

=> (p-1)(p+1) ⋮ 3 (2)

từ (1),(2) kết hợp với 3; 8 là 2 số nguyên tố cùng nhau

=> (p-1)(p+1) ⋮ (3.8)

=> (p-1)(p+1) ⋮ 24

1 tháng 12 2021

undefined

1 tháng 1 2016

p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2. 
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1) 
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2) 
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3) 
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1) 
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4) 
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5) 
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.

HAPPY NEW YEAR!!!!!!!!!!!!

1 tháng 1 2016

P là số nguyên tố lớn hơn 3 => P ko chia hết 2 và 3 

ta có : P ko chia hết 2

=> P-1 và P+1 là 2 số chẵn liên tiếp =>(P-1)x(P+1)chia hết cho 8 (1)

mặt khác : P ko chia hết cho 3

nếu P=3k+1 thì P-1=3k+3 chia hết cho 3 => (P-1(P+1) chia hết 3

<=> Nếu P=3k+2 thì p-1=3k chia hết cho 3=> (P-1 (p+1) chia hết cho 3(2)

từ (1),(2) => (p-1)x(p+1) chia hết cho 8 cho 3 mà (8;3)=1=>(p-1)x(p+1) chia hết 24

7 tháng 7 2017

Vì p là số nguyên tố lớn hơn 3 nên p lẻ

=> p+2015 và p+2017 là 2 số chẵn liên tiếp

=> (p+2015)(p+2017) chia hết cho 8(1)

mặt khác p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 và 3k+2

Nếu p=3k+1 thì (p+2015)(p+2017)=(3k+1+2015)(3k+1+2017)=3(k+672)(3k+2018) chia hết cho 3=>(p+2015)(o+2017) chia hết cho 3(2)

Nếu p=3k+2 chứng minh tương tự ta đc (p+2015)(p+2017) chia hết cho 3(3)

Từ (1),(2),(3) => (p+20150(p+2017) chia hết cho 24

=> ĐPCM

19 tháng 3 2018

tìm x sao cho 2 + 2x+1 + 2x+2 + 2x+3  + ... +2x+2015 = 22017 - 2

giải giúp mình với

24 tháng 10 2015

Vì p là số nguyên tố lớn hơn 3

=>p là số lẻ

=>p=2k+1

Khi đó: (p-1).(p+1)=(2k+1-1).(2k+1+1)=2k.(2k+2)=2k.2.(k+1)=4.k.(k+1)

Vì k và k+1 là 2 số tự nhiên liên tiếp

=>k.(k+1) chia hết cho 2

=>4.k.(k+1) chia hết cho 4.2

=>4.k.(k+1) chia hết cho 8

=>(p-1).(p+1) chia hết cho 8(1)

Lại có: (p-1).(p+1)=p2-1

Vì p là số nguyên tố lớn hơn 3

=>p không chia hết cho 3

=>p2 chia 3 dư 1

=>p2-1 chia hết cho 3

=>(p-1).(p+1) chia hết cho 3(2)

Từ (1) và (2) ta thấy:

(p-1).(p+1) chia hết cho 8 và 3

Mà (8,3)=1

=>(p-1).(p+1) chia hết cho 8.3

=>(p-1).(p+1) chia hết cho 24

Vậy (p-1).(p+1) chia hết cho 24

Vì p là số nguyên tố lớp hơn a nên p là số lẻ.

\(\Rightarrow\left(p+2015\right)\left(p+2017\right)⋮8\text{ }\)     (1)

Vì p là số nguyên tố lớn hơn 3 nên p có dạng \(3k+1\) và \(3k+2\) \(\left(k\inℕ^∗\right)\)

+) Với \(p=3k+1\)

 \(\Rightarrow\left(p+2015\right)\left(p+2017\right)=\left(3k+2016\right)\left(3k+2018\right)⋮3\) (Vì \(3k⋮3\text{ };\text{ }2016⋮3\) ở số đầu tiên)     (2)

+) Với \(p=3k+2\)

\(\Rightarrow\left(p+2015\right)\left(p+2017\right)=\left(3k+2017\right)\left(3k+2019\right)⋮3\) (Vì \(3k⋮3\text{ };\text{ }2019⋮3\) nên số thứ hai chia hết cho 3   (3)

Từ (1) ; (2) và (3), suy ra \(\left(p+2015\right)\left(p+2017\right)⋮24\) (đpcm)

2 tháng 2 2017

Ta có : (p-1)(p+1) = p- 1

Vì p là số nguyên tố lớn hơn 3 nên p ko chia hết cho 3. Suy ra : pkhông chia hết cho 3

\(\Rightarrow\)pchia 3 dư 1 (Vì plà số chính phương)

\(\Rightarrow\)p-1 \(⋮\)3

Vì p là số nguyên tố lớn hơn 3 nên p không chia hết cho 2. Suy ra p-1\(⋮\)2 và p+1\(⋮\)2.

\(\Rightarrow\)(p-1)(p+1) là tích của 2 số tự nhiên liên tiếp

Do đó: (p-1)(p+1) \(⋮\)8

Vì (p-1)(p+1) chia hết cho 3 và 8 nên (p-1)(p+1) \(⋮\)24 (đpcm)