K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2017

\(\left(a+b\right)^n=a^n+C^1_na^{n-1}b+C^2_na^{n-2}b^2+...+C^{n-1}_nab^{n-1}+b^n\)

=> \(\left(\sqrt{3}+\sqrt[3]{30}\right)^6=\sqrt{3}^6+C^1_6\sqrt{3}^5\cdot\sqrt[3]{30}+C^2_6\sqrt{3}^4\cdot\sqrt[3]{30}^2+C_6^3\sqrt{3}^3\cdot\sqrt[3]{30}^3+C^4_6\sqrt{3}^2\cdot\sqrt[3]{30}^4+C^5_6\sqrt{3}\cdot\sqrt[3]{30}^5+\sqrt[3]{30}^6\)

...muộn rồi, tự làm nốt nhé :))...

27 tháng 7 2018

ta có : \(\left(a+b\right)^n=C^0_na^n+C^1_na^{n-1}b+C^2_na^{n-2}b^2+...+C^k_na^{n-k}b^k+...+C^n_nb^n\)

ta có : \(\left(\sqrt{3}+\sqrt[3]{30}\right)^6\)

\(=C^0_6\left(\sqrt{3}\right)^6+C^1_6\left(\sqrt{3}\right)^5\left(\sqrt[3]{30}\right)+C^2_6\left(\sqrt{3}\right)^4\left(\sqrt[3]{30}\right)^2+C^3_6\left(\sqrt{3}\right)^3\left(\sqrt[3]{30}\right)^3+C^4_6\left(\sqrt{3}\right)^2\left(\sqrt[3]{30}\right)^4+C^5_6\left(\sqrt{3}\right)\left(\sqrt[3]{30}\right)^5+C^6_6\left(\sqrt[3]{30}\right)^6\)

10 tháng 11 2016

\(\sum_{k=1}^nC^k_{2n+1}=2^{20}-1\)

\(\frac{\sum_{k=1}^n\left(2C^k_{2n+1}\right)+1+1}{2}=2^{20}\)

\(C^0_{2n+1}+\sum_{k=1}^n\left(C^k_{2n+1}+C_{2n+1}^{2n+1-k}\right)+C^{2n+1}_{2n+1}=2^{21}\)

\(\sum_{k=0}^{2n+1}C^k_{2n+1}=2^{21}\)

\(\Rightarrow2n+1=21\Rightarrow n=10\)

Số hạng chứa \(x^{26}\) có dạng là:

\(C^k_{10}.\left(\frac{1}{x^4}\right)^k.\left(x^7\right)^{10-k}\Rightarrow-4k+7.\left(10-k\right)=26\)

\(\Rightarrow k=4\)

hệ số của \(x^{26}\) là:

\(C^4_{10}=210\)

27 tháng 11 2021

dạ chỉ em cái dòng số 3 sao ra 21 nha, em ko biết .. oho

3 tháng 8 2018

ta có : \(\left(2nx+\dfrac{1}{2nx^2}\right)^{3n}=\sum\limits^{3n}_{k=0}C^k_{3n}\left(2nx\right)^{3n-k}\left(\dfrac{1}{2nx^2}\right)^k\)

\(=\sum\limits^{3n}_{k=0}C^k_{3n}2^{3n-2k}\left(n\right)^{3n-2k}\left(x\right)^{3n-3k}\)

\(\Rightarrow\) tổng hệ số bằng : \(C^0_{3n}+C_{3n}^1+C^2_{3n}+...+C^{3n}_{3n}=64\)

\(\Leftrightarrow\left(1+1\right)^{3n}=64\Leftrightarrow2^{3n}=2^6\Rightarrow n=2\)

để có số hạng không chữa \(x\) không khai triển thì \(3n-3k=0\Leftrightarrow n=k\)

\(\Rightarrow\) hệ số của số hạng không chữa \(x\)\(C^2_6.2^2.2^2=240\)

vậy ...........................................................................................................................

13 tháng 11 2019

Mysterious Person bn ơi cho mik hỏi chút nha , tại sao ở trên có

23n-2kn3n-2k mà ở dưới phần tổng hệ số í lại ko có ....Mong bn giúp mik ...

19 tháng 8 2018

ta có : \(\left(\dfrac{x}{3}-\dfrac{3}{x}\right)^{12}=\sum\limits^{12}_{k=0}C^k_{12}\left(\dfrac{x}{3}\right)^{12-k}.\left(-1\right)^k\left(\dfrac{3}{x}\right)^k\)

\(=\sum\limits^{12}_{k=0}C^k_{12}\left(-1\right)^k\dfrac{\left(x\right)^{12-2k}}{3^{12-2k}}\)

\(\Rightarrow\) để có số hạng chứa \(x^4\) thì \(12-2k=4\Leftrightarrow k=4\)

\(\Rightarrow\) hệ số của số hạng chứa \(x^4\) là : \(\dfrac{C^4_{12}\left(-1\right)^4}{3^4}=\dfrac{55}{9}\)

vậy ............................................................................................................

3 tháng 4 2017

a) Theo dòng 5 của tam giác Pascal, ta có:

(a + 2b)5= a5 + 5a4 (2b) + 10a3(2b)2 + 10a2 (2b)3 + 5a (2b)4 + (2b)5

= a5 + 10a4b + 40a3b2 + 80a2b3 + 80ab4 + 32b5

b) Theo dòng 6 của tam giác Pascal, ta có:

(a - √2)6 = [a + (-√2)]6 = a6 + 6a5 (-√2) + 15a4 (-√2)2 + 20a3 (-√2)3 + 15a2 (-√2)4 + 6a(-√2)5 + (-√2)6.

= a6 - 6√2a5 + 30a4 - 40√2a3 + 60a2 - 24√2a + 8.

c) Theo công thức nhị thức Niu – Tơn, ta có:

(x - )13= [x + (- )]13 = Ck13 . x13 – k . (-)k = Ck13 . (-1)k . x13 – 2k

Nhận xét: Trong trường hợp số mũ n khá nhỏ (chẳng hạn trong các câu a) và b) trên đây) thì ta có thể sử dụng tam giác Pascal để tính nhanh các hệ số của khai triển.