K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2017

A B C M N

Trong \(\Delta ABC\) có:

\(BC^2=AC^2+AB^2=144+25=169\)

\(\Rightarrow BC=13\left(cm\right)\)

Xét \(\Delta\)ABC có:

MA = MB (gt)

NA=NC (gt)

=> MN là đường trung bình \(\Delta ABC\)

=>\(MN=\dfrac{1}{2}BC=\dfrac{1}{2}.13=6,5\left(cm\right)\)

Lại có: \(AN=\dfrac{1}{2}AC=6\left(cm\right)\)

P/S sai thui :))

15 tháng 11 2017

chết mịa roài N là trung điểm BC :)) hèn gì thầy lạ :D sorry chán quá chắc 30phut nữa có thằng nhóc láu cá nó vào ns liền rồi nó giải cho :D

16 tháng 4 2017

Ta có :

C = (x2 - 2xy + y2) + ( y2 – 4y+4)+1
= (x –y)2 + (y -2)2 + 1
Vì (x – y)2 ≥ 0 ; (y-2)2 ≥ 0
Do vậy: C ≥ 1 với mọi x;y
Dấu “ = ” Xảy ra khi x-y = 0 và y-2 =0 ⇔ x=y =2
Vậy: Min C = 1 khi x = y =2

7 tháng 12 2020

A=x2+5y2-2xy+2x-6y+5

=(x2-y2+1-2xy+2x-2y)+(4y2-8y+4)

=(x-y+1)2+(2y-2)2
Ta thấy (x-y+1)2≥0 ∀xy
(2y-2)2≥0 ∀y

⇒(x-y+1)2+(2y-2)2≥0 ∀xy
hay A≥0
Dấu "=" xảy ra ⇔ {x-y+1=0
{2y-2=0

⇔{x-1+1=0
{y=1

⇔{x=0
{y=1
Vậy MinA=0⇔x=0,y=1

a: Xét tứ giác ABFC có 

M là trung điểm của FA

M là trung điểm của BC

Do đó: ABFC là hình bình hành

b: Xét ΔAKF có 

H là trung điểm của AK

M là trung điểm của AF

Do đó: HM là đường trung bình

=>HM//KF

hay KF//BC

Xét ΔCAK có 

CH là đường cao

CH là đường trung tuyến

DO đó: ΔCAK cân tại C

=>CA=CK=BF

Xét tứ giác BKFC có KF//BC

nên BKFC là hình thang

mà BF=CK

nên BKFC là hình thang cân

NM
12 tháng 8 2021

Thực hiện nhân tung ra ta có .

a.\(x^3+3x^2+3x+1-\left(x^3-3x+2\right)-3\left(x^2-9\right)=5\)

\(\Leftrightarrow6x+1-2+27=5\Leftrightarrow6x=-21\Leftrightarrow x=-\frac{7}{2}\)

b.\(x^3+3x^2-4+x^3-3x+2-\left(x^3+3x^2+3x+1\right)=4\)

\(\Rightarrow x^3=7\Leftrightarrow x=\sqrt[3]{7}\)

c.\(x^3+3x^2+3x+1+x^3-3x^2+3x-1=x^3+6x^2+12x+8+x^3-6x^2+12x-8\)

\(\Leftrightarrow2x^3+6x=2x^3+24x\Leftrightarrow18x=0\Leftrightarrow x=0\)

12 tháng 8 2021

a) \(\left(x+1\right)^3-\left(x+2\right)\left(x-1\right)^2-3\left(x-3\right)\left(x+3\right)\)

\(=\left(x^3+3x^2+3x+1\right)-\left(x+1\right)\left(x^2-2x+1\right)-3\left(x^2-9\right)\)

\(=x^3+3x^2+3x+1-\left(x^3-x^2-x+1\right)-\left(3x^2-27\right)\)

\(=x^3+3x^2+3x+1-x^3+x^2+x+1-3x^2+27\)

\(=6x+26\)

16 tháng 4 2017

\(A=(x-y+1)^2+(2y-1)^2+3\ge 3\)

Vậy minA=3 khi \(x=-\dfrac{1}{2},y=\dfrac{1}{2}\)

16 tháng 4 2017

Bạn viết rõ cho mình dc ko