Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
a: \(BD=\sqrt{BC^2-DC^2}=4\left(cm\right)\)
b: \(\widehat{A}=180^0-2\cdot70^0=40^0< \widehat{B}\)
nên BC<AC=AB
c: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó:ΔEBC=ΔDCB
d: Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)
nên ΔOBC cân tại O
Câu 2
a) Thay y = -2 vào biểu thức đã cho ta được:
2.(-2) + 3 = -1
Vậy giá trị của biểu thức đã cho tại y = -2 là -1
b) Thay x = -5 vào biểu thức đã cho ta được:
2.[(-5)² - 5] = 2.(25 - 5) = 2.20 = 40
Vậy giá trị của biểu thức đã cho tại x = -5 là 40
quá dễ : cung tên chứ cái j nữa. cung bắn chứ đâu bay dc. còn tên thì bay dc hà
\(B\left(x\right)=2x^2-10x+12\)
\(B\left(x\right)=\left(2x^2-4x\right)-\left(6x-12\right)\)
\(B\left(x\right)=2x\left(x-2\right)-6\left(x-2\right)\)
\(B\left(x\right)=\left(2x-6\right)\left(x-2\right)\)
Mà : \(B\left(x\right)=0\)
\(\Rightarrow\left(2x-6\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-6=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)
Vậy x = 2 ; 3
Theo đề bài,ta có:
(a+3c)+(a+2c)=2016+2017=4033
=>a+3c+a+2b=4033
=>2a+2b+2c+c=4033
=>2(a+b+c)+c=4033
Để a+b+c nhỏ nhất thì c lớn nhất => c=9
=>2(a+b+c)=4033-9
=>2(a+b+c)=4024
P=a+b+c=2012
Vậy giá trị nhỏ nhất của a+b+c=2012
Ko biết có đúng ko nữa.