K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 1 2017

Lời giải:

Để hàm \(y=\sqrt{x^2-4x+m-3}\) xác định với mọi \(x\in\mathbb{R}\) thì điều kiện cần và đủ là \(x^2-4x+m-3\geq 0\forall x\in\mathbb{R}\)

\(\Leftrightarrow m\geq -x^2+4x+3\forall x\in\mathbb{R}\) hay \(m\geq (-x^2+4x+3)_{\max}=f(x)_{\max}\)

Ta có \(f'(x)=-2x+4=0\Leftrightarrow x=2\)

\(\Rightarrow f(x)_{\max}=f(2)=7\). Do đó chỉ cần $m\geq 7$ thì hàm số luôn xác định với mọi $x\in\mathbb{R}$

24 tháng 1 2017

hay đấy

6 tháng 5 2016

Hàm số xác định với mọi \(x\in R\Leftrightarrow\begin{cases}\frac{x^2-mx+1}{x^2-x+1}>\frac{2}{3}\\\frac{x^2-mx+1}{x^2-x+1}\le\frac{2}{3}\end{cases}\) với mọi \(x\in R\)

\(\Leftrightarrow\begin{cases}x^2-\left(3m-2\right)x+1>0\\x^2+\left(2m-3\right)x+1\ge0\end{cases}\)

\(\Leftrightarrow\begin{cases}\Delta_1=9m^2-12m< 0\\\Delta_2=4m^2-12m+5\le0\end{cases}\)

\(\Leftrightarrow\begin{cases}0< m< \frac{4}{3}\\\frac{1}{2}\le m\le\frac{5}{2}\end{cases}\)

\(\Leftrightarrow\frac{1}{2}\le m< \frac{4}{3}\)

Vậy \(\frac{1}{2}\le m< \frac{4}{3}\) thì hàm số đã cho xác định với mọi \(x\in R\)

6 tháng 5 2016

Hàm số xác định với mọi \(x\in R\) khi và chỉ khi 

\(\log_3\left(x^2-2x+3m\right)>0,x\in R\)

\(x^2-2x+3m>1,x\in R\Leftrightarrow x^2-2x+3m-1>0x\in R\)

Vì \(a=1>0\) nên \(\Delta'< 0\Leftrightarrow1-\left(3m-1\right)< 0\Leftrightarrow m>\frac{2}{3}\)

Vậy với \(m>\frac{2}{3}\) thì hàm số đã cho xác định với mọi \(x\in R\)

22 tháng 8 2018





24 tháng 12 2016

\(y'=\left(2m+1\right)\cos x+3-m\)

Hàm số đã cho đồng biến trên R \(\Leftrightarrow y'\ge0,\forall x\in R\)

\(\Leftrightarrow\left(2m+1\right)\cos x\le m-3\) (1)

*TH: \(2m+1< 0\Leftrightarrow m< \frac{-1}{2}\), ta có

\(\left(1\right)\Leftrightarrow\cos x\ge\frac{m-3}{2m+1}\) (không thoả với mọi x)

*TH: \(2m+1>0\Leftrightarrow m>\frac{-1}{2}\), ta có

\(\left(1\right)\Leftrightarrow\cos x\le\frac{m-3}{2m+1}\) (2)

(2) đúng với mọi x khi và chỉ khi \(\left|\frac{m-3}{2m+1}\right|>1\Leftrightarrow\left[\begin{array}{nghiempt}m< -4\\m>\frac{2}{3}\end{array}\right.\)

kết hợp \(m>\frac{-1}{2}\) ta có m > 3/2 là giá trị cần tìm

 

 

 

25 tháng 12 2016

sai rùi bạn à. đáp án là A cơ

Chọn B

29 tháng 7 2018