K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2018

\(2n+3\)và \(3n+4\)

Gọi d là ước chung lớn nhất của \(2n+3\)và \(3n+4\)

Ta có :

\(2n+3⋮d=\left(2n+3\right)\cdot3⋮d=\left(6n+9\right)⋮d\)

\(3n+4⋮d=\left(3n+4\right)\cdot2⋮d=\left(6n+8\right)⋮d\)

\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)

\(\Rightarrow6n+9-6n-8⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\)Vậy \(2n+3\)và \(3n+4\)là hai số nguyên tố cùng nhau

20 tháng 6 2018

Gọi ƯCLN ( 2n+3;3n+4 ) là d

\(\Rightarrow\orbr{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}3.\left(2n+3\right)⋮d\\2.\left(3n+4\right)⋮d\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}}\)\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\in\text{Ư}\left(1\right)=\pm1\)

\(\Rightarrow\)2n+3 và 3n+4 là 2 số nguyên tố cùng nhau

                                                đpcm

27 tháng 12 2017

khó quá khó tìm,k đi!!!!!

10 tháng 1 2016

Gọi d thuộc Ư(6n+5,4n+3)

=>6n+5 chia hết cho d ; 4n+3 chia hết cho d

=>2(6n+5) chia hết cho d ; 3(4n+3) chia hết cho d

=>(12n+10)-(12n+9) chia hết cho d

=> 1 chia hết cho d

=>d=1

Vậy 6n+5 và 4n+3 là 2 số nguyên tố cùng nhau

5 tháng 12 2016

mình giải rồi không thấy ý kiến gì?

7 tháng 12 2017

1. Nhận xét rằng a là số tự nhiên lẻ và ab + 4 là một số chẵn.
Nếu d là một ước chung của a và ab + 4 ( d > 1), thì do a lẻ nên d phải là số lẻ.
Do ab chia hết cho d nên 4 chia hết cho d, suy ra d  \(\in\) { 2; 4 }.  (mâu thuẫn)..
b) Gọi d là ước chung lớn nhất của n + 2 và 3n + 11.
Suy ra \(\hept{\begin{cases}n+2⋮d\\3n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+6⋮d\\3n+11⋮d\end{cases}}}\).
Suy ra \(3n+11-\left(3n+6\right)=5⋮d\)
Vì vậy d  = 1 hoặc d = 5.
Để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau thì d = 1.
Nếu giả sử ngược lại \(\hept{\begin{cases}n+2⋮5\\3n+11⋮5\end{cases}}\) \(\Leftrightarrow n+2⋮5\).
Suy ra \(n\) chia 5 dư 3 hay n = 5k + 3.
Vậy để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau, thì n chia cho 5 dư 0, 1, 2, 4 hay n = 5k, n = 5k +1, n = 5k + 2, n = 5k + 4.

 

19 tháng 7 2017

Gọi UCLN 2n + 3, n + 2 là d, khi đó:

\(\hept{\begin{cases}2n+3⋮d\\2\left(n+2\right)⋮d\end{cases}\Rightarrow2n+4-2n-3⋮d}\)

\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\Rightarrow d=1\) do n là số tự nhiên

Vậy (2n + 3,n + 2) = 1 (đpcm)

20 tháng 7 2017

Gọi ƯCLN \(\left(2n+3;n+2\right)\)\(d\)

Ta có:

\(\hept{\begin{cases}n+2=2n+4\\2n+3\end{cases}=2n+4-2n+3=d}\)

Mà \(1⋮d\)và \(Ư\left(1\right)\Rightarrow d=1\)

Vậy \(2n+3\)và \(n+2\)là số nguyên tố cùng nhau \(\left(đpcm\right)\)

14 tháng 11 2014

Ta gọi d thuộc ƯC(n+1,3n+4)

Ta có n+1 chia hết cho d, 3n+4 chia hết cho d

=> 3(n+1) chia hết cho d, 3n+4 chia hết cho d

=> 3n+3 chia hết cho d, 3n+4 chia hết cho d 

=> (3n+4) - ( 3n+3 ) chia hết cho d ( vì 3n+ 4 chia hết cho d và 3n+3 cũng chia hết cho d )

=> 1 chia hết cho d => d = 1. Vậy n+1 và 3n+4 là 2 số nguyên tố cùng nhau ( đpcm ) 

6 tháng 11 2016

Kết quả là 2 nha 

aaaaaaaaaaa

@@@@@@@@@@@@@@@

6 tháng 11 2016

vì chúng không thể có ước chung khác ngoài 1

15 tháng 12 2017

Gọi ƯCLN của 2n+3 và 3n+4 là d ( d thuộc N sao )

=> 2n+3 và 3n+4 đều chia hết cho d

=> 3.(2n+3) và 2.(3n+4) đều chia hết cho d

=> 6n+9 và 6n+8 đều chia hết cho d

=> 6n+9-(6n+8) chia hết cho d        hay 1 chia hết cho d 

=> d = 1 ( vì d thuộc N sao )

=> ƯCLN của 2n+3 và 3n+4 là 1

=> 2n+3 và 3n+4 là 2 số nguyên tố cùng nhau

k mk nha

15 tháng 12 2017

thank bn, nhớ ủng hộ mk những câu hỏi sau nha.....>_<