K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2017

Bài 1:Áp dụng C-S dạng engel

\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{2}{x^2+y^2+z^2}\)

\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)

22 tháng 5 2017

\(\frac{x^2}{2y}+\frac{y^2}{2x}+\frac{y^2}{2z}+\frac{z^2}{2y}+\frac{z^2}{2x}+\frac{x^2}{2z}\ge\frac{\left(2x+2y+2z\right)^2}{4\left(x+y+z\right)}=x+y+z\)

19 tháng 9 2016

áp dụngBĐT cô si ta có

\(\frac{x^2}{y+1}\)+\(\frac{y+1}{4}\)\(\ge\)x

\(\frac{y^2}{z+1}\)+\(\frac{z+1}{4}\)\(\ge\)y

\(\frac{z^2}{x+1}\)+\(\frac{x+1}{4}\)\(\ge\)z

khi đó VT\(\ge\)x+y+z-\(\frac{x+y+z+3}{4}\)=\(\frac{3\left(x+y+z\right)-3}{4}\)

áp dụng BĐT cô si

x+y+z\(\ge\)\(3\sqrt[3]{xyz}\)=3

do đó VT\(\ge\)\(\frac{6}{4}\)=\(\frac{3}{2}\)  (đpcm)

15 tháng 12 2021

em không biết

15 tháng 12 2021

gà quá

21 tháng 8 2016

\(\frac{x}{x+2}+\frac{y}{y+2}=2-2\left(\frac{1}{x+2}+\frac{1}{y+2}\right)\le2-2.\frac{4}{x+2+y+2}=2-\frac{8}{4-z}\)

Cần CM: \(2-\frac{8}{4-z}+\frac{z}{z+8}\le\frac{1}{3}\)

\(\Leftrightarrow\frac{8\left(z-2\right)^2}{3\left(4-z\right)\left(z+8\right)}\ge0\)

bđt trên đúng do \(4-z=\left(x+2\right)+\left(y+2\right)>0\)

22 tháng 8 2016

Dòng kế cuối sửa lại thành \(\frac{8\left(z+2\right)^2}{3\left(4-z\right)\left(z+8\right)}\ge0\) nhé.

30 tháng 5 2020

\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)

\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)

\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)

\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)

Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)

NV
18 tháng 11 2019

Đơn giản là C-S:

\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\)

Hoặc làm theo AM-GM:

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge x\) ; \(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\); \(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)

Cộng vê với vế:

\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+\frac{1}{2}\left(x+y+z\right)\ge x+y+z\)

\(\Leftrightarrow\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{1}{2}\left(x+y+z\right)\)

Dấu "=" xảy ra khi \(x=y=z\)